Research Article
BibTex RIS Cite

Hilbert's Syzygy Theorem for monomial ideals

Year 2022, Volume: 32 Issue: 32, 80 - 85, 16.07.2022
https://doi.org/10.24330/ieja.1102307

Abstract

We give a new proof of Hilbert's Syzygy Theorem for monomial ideals. In addition, we prove the following. If S=k[x1,,xn]S=k[x1,…,xn] is a polynomial ring over a field, MM is a squarefree monomial ideal in SS, and each minimal generator of MM has degree larger than ii, then pd(S/M)ni\pd(S/M)≤n−i.

References

  • G. Alesandroni, Monomial ideals with large projective dimension, J. Pure Appl. Algebra, 224(6) (2020), 106257 (13 pp).
  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • D. Eisenbud, Commutative Algebra, Springer-Verlag, New York, 1995.
  • V. Gasharov, T. Hibi and I. Peeva, Resolutions of a-stable ideals, J. Algebra, 254(2) (2002), 375-394.
  • V. Gasharov, I. Peeva and V. Welker, Coordinate subspace arrangements and monomial ideals, Proceedings of the Computational Commutative Algebra and Combinatorics (Osaka, 1999), Adv. Stud. Pure Math., 33 (2002), 65-74.
  • D. Hilbert, Über die Theorie von algebraischen Formen, Math. Ann., 36 (1890), 473-534.
  • J. Mermin, Three Simplicial Resolutions, Progress in Commutative Algebra 1, De Gruyter, Berlin, 2012.
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math., vol. 227, Springer-Verlag, New York, 2004.
  • I. Peeva, Graded Syzygies, Algebra and Applications, vol. 14, Springer-Verlag, London, 2011.
  • F. O. Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstra\ss schen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay Stellenalgebren minimaler Multiplizit\"at, Master's thesis, Universit\"at Hamburg, 1980.
Year 2022, Volume: 32 Issue: 32, 80 - 85, 16.07.2022
https://doi.org/10.24330/ieja.1102307

Abstract

References

  • G. Alesandroni, Monomial ideals with large projective dimension, J. Pure Appl. Algebra, 224(6) (2020), 106257 (13 pp).
  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • D. Eisenbud, Commutative Algebra, Springer-Verlag, New York, 1995.
  • V. Gasharov, T. Hibi and I. Peeva, Resolutions of a-stable ideals, J. Algebra, 254(2) (2002), 375-394.
  • V. Gasharov, I. Peeva and V. Welker, Coordinate subspace arrangements and monomial ideals, Proceedings of the Computational Commutative Algebra and Combinatorics (Osaka, 1999), Adv. Stud. Pure Math., 33 (2002), 65-74.
  • D. Hilbert, Über die Theorie von algebraischen Formen, Math. Ann., 36 (1890), 473-534.
  • J. Mermin, Three Simplicial Resolutions, Progress in Commutative Algebra 1, De Gruyter, Berlin, 2012.
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math., vol. 227, Springer-Verlag, New York, 2004.
  • I. Peeva, Graded Syzygies, Algebra and Applications, vol. 14, Springer-Verlag, London, 2011.
  • F. O. Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstra\ss schen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay Stellenalgebren minimaler Multiplizit\"at, Master's thesis, Universit\"at Hamburg, 1980.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Guillermo Alesandronı This is me

Publication Date July 16, 2022
Published in Issue Year 2022 Volume: 32 Issue: 32

Cite

APA Alesandronı, G. (2022). Hilbert’s Syzygy Theorem for monomial ideals. International Electronic Journal of Algebra, 32(32), 80-85. https://doi.org/10.24330/ieja.1102307
AMA Alesandronı G. Hilbert’s Syzygy Theorem for monomial ideals. IEJA. July 2022;32(32):80-85. doi:10.24330/ieja.1102307
Chicago Alesandronı, Guillermo. “Hilbert’s Syzygy Theorem for Monomial Ideals”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 80-85. https://doi.org/10.24330/ieja.1102307.
EndNote Alesandronı G (July 1, 2022) Hilbert’s Syzygy Theorem for monomial ideals. International Electronic Journal of Algebra 32 32 80–85.
IEEE G. Alesandronı, “Hilbert’s Syzygy Theorem for monomial ideals”, IEJA, vol. 32, no. 32, pp. 80–85, 2022, doi: 10.24330/ieja.1102307.
ISNAD Alesandronı, Guillermo. “Hilbert’s Syzygy Theorem for Monomial Ideals”. International Electronic Journal of Algebra 32/32 (July 2022), 80-85. https://doi.org/10.24330/ieja.1102307.
JAMA Alesandronı G. Hilbert’s Syzygy Theorem for monomial ideals. IEJA. 2022;32:80–85.
MLA Alesandronı, Guillermo. “Hilbert’s Syzygy Theorem for Monomial Ideals”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 80-85, doi:10.24330/ieja.1102307.
Vancouver Alesandronı G. Hilbert’s Syzygy Theorem for monomial ideals. IEJA. 2022;32(32):80-5.