Year 2023,
Volume: 33 Issue: 33, 247 - 269, 09.01.2023
Vsevolod Gubarev
Roman Kozlov
References
- M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys., 54(4) (2000), 263-277.
- A. D'Andrea and V. G. Kac, Structure theory of finite conformal algebras, Selecta Math., 4(3) (1998), 377-418.
- C. Bai, O. Bellier, L. Guo and X. Ni, Splitting of operations, Manin products, and Rota---Baxter operators, Int. Math. Res. Not., 3 (2013), 485-524.
- B. Bakalov, A. D'Andrea and V. G. Kac, Theory of finite pseudoalgebras, Adv. Math., 162(1) (2001), 1-140.
- G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10 (1960), 731-742.
- A. A. Belavin, V. G. Drinfel'd, Solutions of the classical Yang---Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen., 16(3) (1982), 1-29.
- A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B, 241(2) (1984), 333-380.
- P. Benito, V. Gubarev and A. Pozhidaev, Rota---Baxter operators on quadratic algebras, Mediterr. J. Math., 15(5) (2018), 189 (23 pp).
- R. E. Borcherds, Vertex algebras, Kac–Moody algebras, and the monster, Proc. Nat. Acad. Sci. U.S.A., 83(10) (1986), 3068-3071.
- C. Boyallian and J. I. Liberati, On pseudo-bialgebras, J. Algebra, 372 (2012), 1-34.
- D. Burde and V. Gubarev, Rota---Baxter operators and post-Lie algebra structures on semisimple Lie algebras, Comm. Algebra, 47(5) (2019), 2280-2296.
- E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI, 2001.
- M. Goncharov and V. Gubarev, Double Lie algebras of nonzero weight, Adv. Math., 409 (2022), 108680 (30 pp).
- M. E. Goncharov and P. S. Kolesnikov, Simple finite-dimensional double algebras, J. Algebra, 500 (2018), 425-438.
- V. Gubarev and P. Kolesnikov, Embedding of dendriform algebras into Rota---Baxter algebras, Cent. Eur. J. Math., 11(2) (2013), 226-245.
- V. Gubarev and R. Kozlov, Conformal Yang---Baxter equation on $\Cur(\sl_2(\mathbb{C}))$, arXiv:2209.12431, (20~pp).
- L. Guo, An Introduction to Rota---Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
- Y. Hong and C. Bai, Conformal classical Yang-Baxter equation, $S$-equation and $\mathcal{O}$-operators, Lett. Math. Phys., 110(5) (2019), 885-909.
- V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, 10. American Mathematical Society, Providence, RI, 1997.
- P. Kolesnikov, Homogeneous averaging operators on simple finite conformal Lie algebras, J. Math. Phys., 56(7) (2015), 071702 (10 pp).
- E. I. Konovalova, Double Lie Algebras, PhD thesis, Samara State University, 2009, 189 pp. (in Russian).
- J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics, 227. Birkhäuser Boston, Inc., Boston, MA, 2004.
- J. I. Liberati, conformal bialgebras, J. Algebra, 319(6) (2008), 2295-2318.
- L. Liu and S. Wang, Rota---Baxter $H$-operators and pre-Lie $H$-pseudoalgebras over a~cocommutative Hopf algebra $H$, Linear Multilinear Algebra, 68(11) (2020), 2170-2184.
- J. Liu, S. Zhou and L. Yuan, Conformal $r$-matrix-Nijenhuis structures, symplectic-Nijenhuis structures and $\mathcal{O}N$-structures, J. Math. Phys., 63(10) (2022), 101701 (22 pp).
- Y. Pan, Q. Liu, C. Bai and L. Guo, PostLie algebra structures on the Lie algebra $\mathrm{sl}(2,\mathbb{C})$, Electron. J. Linear Algebra, 23 (2012), 180-197.
- L. Yuan, $\mathcal{O}$-operators and Nijenhius operators of associative conformal algebras, J. Algebra, 609 (2022), 245-291.
- J. Zhao, L. Chen and B. Sun, Representations and cohomology of Rota---Baxter Lie conformal algebras, preprint (researchgate), 2021, 18 pp.
Rota---Baxter operators on $Cur(sl_2(\mathbb{C}))$
Year 2023,
Volume: 33 Issue: 33, 247 - 269, 09.01.2023
Vsevolod Gubarev
Roman Kozlov
Abstract
We classify all Rota---Baxter operators on the simple Lie conformal algebra $\Cur(\sl_2(\mathbb{C}))$ and clarify which of them arise from the solutions to the conformal classical Yang---Baxter equation due to the connection discovered by Y. Hong and C. Bai in 2020.
References
- M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys., 54(4) (2000), 263-277.
- A. D'Andrea and V. G. Kac, Structure theory of finite conformal algebras, Selecta Math., 4(3) (1998), 377-418.
- C. Bai, O. Bellier, L. Guo and X. Ni, Splitting of operations, Manin products, and Rota---Baxter operators, Int. Math. Res. Not., 3 (2013), 485-524.
- B. Bakalov, A. D'Andrea and V. G. Kac, Theory of finite pseudoalgebras, Adv. Math., 162(1) (2001), 1-140.
- G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10 (1960), 731-742.
- A. A. Belavin, V. G. Drinfel'd, Solutions of the classical Yang---Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen., 16(3) (1982), 1-29.
- A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B, 241(2) (1984), 333-380.
- P. Benito, V. Gubarev and A. Pozhidaev, Rota---Baxter operators on quadratic algebras, Mediterr. J. Math., 15(5) (2018), 189 (23 pp).
- R. E. Borcherds, Vertex algebras, Kac–Moody algebras, and the monster, Proc. Nat. Acad. Sci. U.S.A., 83(10) (1986), 3068-3071.
- C. Boyallian and J. I. Liberati, On pseudo-bialgebras, J. Algebra, 372 (2012), 1-34.
- D. Burde and V. Gubarev, Rota---Baxter operators and post-Lie algebra structures on semisimple Lie algebras, Comm. Algebra, 47(5) (2019), 2280-2296.
- E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI, 2001.
- M. Goncharov and V. Gubarev, Double Lie algebras of nonzero weight, Adv. Math., 409 (2022), 108680 (30 pp).
- M. E. Goncharov and P. S. Kolesnikov, Simple finite-dimensional double algebras, J. Algebra, 500 (2018), 425-438.
- V. Gubarev and P. Kolesnikov, Embedding of dendriform algebras into Rota---Baxter algebras, Cent. Eur. J. Math., 11(2) (2013), 226-245.
- V. Gubarev and R. Kozlov, Conformal Yang---Baxter equation on $\Cur(\sl_2(\mathbb{C}))$, arXiv:2209.12431, (20~pp).
- L. Guo, An Introduction to Rota---Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
- Y. Hong and C. Bai, Conformal classical Yang-Baxter equation, $S$-equation and $\mathcal{O}$-operators, Lett. Math. Phys., 110(5) (2019), 885-909.
- V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, 10. American Mathematical Society, Providence, RI, 1997.
- P. Kolesnikov, Homogeneous averaging operators on simple finite conformal Lie algebras, J. Math. Phys., 56(7) (2015), 071702 (10 pp).
- E. I. Konovalova, Double Lie Algebras, PhD thesis, Samara State University, 2009, 189 pp. (in Russian).
- J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics, 227. Birkhäuser Boston, Inc., Boston, MA, 2004.
- J. I. Liberati, conformal bialgebras, J. Algebra, 319(6) (2008), 2295-2318.
- L. Liu and S. Wang, Rota---Baxter $H$-operators and pre-Lie $H$-pseudoalgebras over a~cocommutative Hopf algebra $H$, Linear Multilinear Algebra, 68(11) (2020), 2170-2184.
- J. Liu, S. Zhou and L. Yuan, Conformal $r$-matrix-Nijenhuis structures, symplectic-Nijenhuis structures and $\mathcal{O}N$-structures, J. Math. Phys., 63(10) (2022), 101701 (22 pp).
- Y. Pan, Q. Liu, C. Bai and L. Guo, PostLie algebra structures on the Lie algebra $\mathrm{sl}(2,\mathbb{C})$, Electron. J. Linear Algebra, 23 (2012), 180-197.
- L. Yuan, $\mathcal{O}$-operators and Nijenhius operators of associative conformal algebras, J. Algebra, 609 (2022), 245-291.
- J. Zhao, L. Chen and B. Sun, Representations and cohomology of Rota---Baxter Lie conformal algebras, preprint (researchgate), 2021, 18 pp.