Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 36 Sayı: 36, 157 - 183, 12.07.2024
https://doi.org/10.24330/ieja.1478624

Öz

Kaynakça

  • D. D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
  • C. P. Mooney, On gracefully and harmoniously labeling zero-divisor graphs, in Rings, Monoids and Module Theory, Springer Proc. Math. Stat., Springer, Singapore, 382 (2021), 239-260.
  • S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307(9-10) (2007), 1155-1166.
  • S. P. Redmond, Corrigendum to: “On zero-divisor graphs of small finite commutative rings” [Discrete Math. 307(9-10) (2007), 1155–1166], Discrete Math., 307(21) (2007), 2449-2452.
  • J. Sedlacek, On magic graphs, Math. Slovaca, 26(4) (1976), 329-335.
  • B. M. Stewart, Magic graphs, Canadian J. Math., 18 (1966), 1031-1059.
  • B. M. Stewart, Supermagic complete graphs, Canadian J. Math., 19 (1967), 427-438.

On magic type labelings of zero-divisor graphs

Yıl 2024, Cilt: 36 Sayı: 36, 157 - 183, 12.07.2024
https://doi.org/10.24330/ieja.1478624

Öz

In this article, we investigate magic type labelings of zero-divisor graphs. In particular, we turn our attention to semi-magic, magic, and super-magic labelings. We are able to construct infinitely many rings which admit these magic type labelings as well as infinitely many rings which do not have these magic type labeling. We further proceed to classify the magic type labeling properties for all of the rings which have zero-divisor graphs with up to 14 vertices. We then conclude with some conjectures about how these patterns may extend for larger zero-divisor graphs.

Kaynakça

  • D. D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
  • C. P. Mooney, On gracefully and harmoniously labeling zero-divisor graphs, in Rings, Monoids and Module Theory, Springer Proc. Math. Stat., Springer, Singapore, 382 (2021), 239-260.
  • S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307(9-10) (2007), 1155-1166.
  • S. P. Redmond, Corrigendum to: “On zero-divisor graphs of small finite commutative rings” [Discrete Math. 307(9-10) (2007), 1155–1166], Discrete Math., 307(21) (2007), 2449-2452.
  • J. Sedlacek, On magic graphs, Math. Slovaca, 26(4) (1976), 329-335.
  • B. M. Stewart, Magic graphs, Canadian J. Math., 18 (1966), 1031-1059.
  • B. M. Stewart, Supermagic complete graphs, Canadian J. Math., 19 (1967), 427-438.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Jackson Feggestad Bu kişi benim

Jacob Halvorson Bu kişi benim

Christopher Park Mooney

Noah Royce Bu kişi benim

Nathaen Wanta Bu kişi benim

Erken Görünüm Tarihi 5 Mayıs 2024
Yayımlanma Tarihi 12 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 36 Sayı: 36

Kaynak Göster

APA Feggestad, J., Halvorson, J., Mooney, C. P., Royce, N., vd. (2024). On magic type labelings of zero-divisor graphs. International Electronic Journal of Algebra, 36(36), 157-183. https://doi.org/10.24330/ieja.1478624
AMA Feggestad J, Halvorson J, Mooney CP, Royce N, Wanta N. On magic type labelings of zero-divisor graphs. IEJA. Temmuz 2024;36(36):157-183. doi:10.24330/ieja.1478624
Chicago Feggestad, Jackson, Jacob Halvorson, Christopher Park Mooney, Noah Royce, ve Nathaen Wanta. “On Magic Type Labelings of Zero-Divisor Graphs”. International Electronic Journal of Algebra 36, sy. 36 (Temmuz 2024): 157-83. https://doi.org/10.24330/ieja.1478624.
EndNote Feggestad J, Halvorson J, Mooney CP, Royce N, Wanta N (01 Temmuz 2024) On magic type labelings of zero-divisor graphs. International Electronic Journal of Algebra 36 36 157–183.
IEEE J. Feggestad, J. Halvorson, C. P. Mooney, N. Royce, ve N. Wanta, “On magic type labelings of zero-divisor graphs”, IEJA, c. 36, sy. 36, ss. 157–183, 2024, doi: 10.24330/ieja.1478624.
ISNAD Feggestad, Jackson vd. “On Magic Type Labelings of Zero-Divisor Graphs”. International Electronic Journal of Algebra 36/36 (Temmuz 2024), 157-183. https://doi.org/10.24330/ieja.1478624.
JAMA Feggestad J, Halvorson J, Mooney CP, Royce N, Wanta N. On magic type labelings of zero-divisor graphs. IEJA. 2024;36:157–183.
MLA Feggestad, Jackson vd. “On Magic Type Labelings of Zero-Divisor Graphs”. International Electronic Journal of Algebra, c. 36, sy. 36, 2024, ss. 157-83, doi:10.24330/ieja.1478624.
Vancouver Feggestad J, Halvorson J, Mooney CP, Royce N, Wanta N. On magic type labelings of zero-divisor graphs. IEJA. 2024;36(36):157-83.