Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 201 - 219, 14.01.2025
https://doi.org/10.24330/ieja.1521082

Abstract

References

  • F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar., 30(1) (1995), 1-26.
  • D. D. Anderson, Multiplicative Lattices, Ph.D dissertation, The University of Chicago, 1974.
  • D. D. Anderson, Abstract commutative ideal theory without chain condition, Algebra Universalis, 6(2) (1976), 131-145.
  • D. D. Anderson, C. Jayaram and P. A. Phiri, Baer lattices, Acta Sci. Math. (Szeged), 59(1-2) (1994), 61-74.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On $z^0$-ideals in $C(X)$, Fund. Math., 160(1) (1999), 15-25.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra, 28(2) (2000), 1061-1073.
  • B. Banaschewski, On certain localic nuclei, Cahiers Topologie Geom. Differentielle Categ., 35(3) (1994), 227-237.
  • B. Banaschewski and R. Harting, Lattice aspects of radical ideals and choice principles, Proc. London Math. Soc., 50(3) (1985), 385-404.
  • P. Bhattacharjee, Maximal $d$-elements of an algebraic frame, Order, 36(2) (2019), 377-390.
  • M. Contessa, A note on Baer rings, J. Algebra, 118(1) (1988), 20-32.
  • R. P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math. Soc., 44(4) (1938), 262-268.
  • R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math., 12 (1962), 481-498.
  • T. Dube, Some ring-theoretic properties of almost $P$-frames, Algebra Universalis, 60(2) (2009), 145-162.
  • T. Dube, Rings in which sums of $d$-ideals are $d$-ideals, J. Korean Math. Soc., 56(2) (2019), 539-558.
  • T. Dube and L. Sithole, On the sublocale of an algebraic frame induced by the $d$-nucleus, Topology Appl., 263 (2019), 90-106.
  • A. Facchini, C. A. Finocchiaro and G. Janelidze, Abstractly constructed prime spectra, Algebra Universalis, 83(1) (2022), 8 (38 pp).
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces I, Nederl. Akad. Wetensch. Indag. Math., 42(2) (1980), 183-195.
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces II, Nederl. Akad. Wetensch. Indag. Math., 42(4) (1980), 391-408.
  • C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math., 15(8) (1984), 855-864.
  • C. S. Manjarekar and A. N. Chavan, $z$-elements and $z_j$-elements in multiplicative lattices, Palest. J. Math., 8(1) (2019), 138-147.
  • J. Martinez and E. Zenk, When an algebraic frame is regular, Algebra Universalis, 50(2) (2003), 231-257.
  • G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japon., 34(6) (1989), 941-956.
  • C. J. Mulvey, &, Second topology conference (Taormina, 1984), Rend. Circ. Mat. Palermo (2) Suppl., 12 (1986), 99-104.
  • S. B. Niefield and K. I. Rosenthal, Constructing locales from quantales, Math. Proc. Cambridge Philos. Soc., 104(2) (1988), 215-234.
  • B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces III, Nederl. Akad. Wetensch. Indag. Math., 43(4) (1981), 409-422.
  • S. Safaeeyan and A. Taherifar, $d$-ideals, $fd$-ideals and prime ideals, Quaest. Math., 42(6) (2019), 717-732.
  • H. Simmons, A framework for topology, Stud. Logic Found. Math., 96 (1978), 239-251.
  • T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), 257-263.
  • M. Ward, Residuation in structures over which a multiplication is defined, Duke Math. J., 3(4) (1937), 627-636.
  • M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45(3) (1939), 335-354.

Revisiting Baer elements

Year 2025, Volume: 37 Issue: 37, 201 - 219, 14.01.2025
https://doi.org/10.24330/ieja.1521082

Abstract

The objective of this paper is to extend certain properties observed in $d$-ideals of rings and $d$-elements of frames to Baer elements in multiplicative lattices. Additionally, we present results concerning these elements that have not been addressed in the study of $d$-ideals of rings. Furthermore, we introduce Baer closures and explore Baer maximal, prime, semiprime and meet-irreducible elements.

References

  • F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar., 30(1) (1995), 1-26.
  • D. D. Anderson, Multiplicative Lattices, Ph.D dissertation, The University of Chicago, 1974.
  • D. D. Anderson, Abstract commutative ideal theory without chain condition, Algebra Universalis, 6(2) (1976), 131-145.
  • D. D. Anderson, C. Jayaram and P. A. Phiri, Baer lattices, Acta Sci. Math. (Szeged), 59(1-2) (1994), 61-74.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On $z^0$-ideals in $C(X)$, Fund. Math., 160(1) (1999), 15-25.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra, 28(2) (2000), 1061-1073.
  • B. Banaschewski, On certain localic nuclei, Cahiers Topologie Geom. Differentielle Categ., 35(3) (1994), 227-237.
  • B. Banaschewski and R. Harting, Lattice aspects of radical ideals and choice principles, Proc. London Math. Soc., 50(3) (1985), 385-404.
  • P. Bhattacharjee, Maximal $d$-elements of an algebraic frame, Order, 36(2) (2019), 377-390.
  • M. Contessa, A note on Baer rings, J. Algebra, 118(1) (1988), 20-32.
  • R. P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math. Soc., 44(4) (1938), 262-268.
  • R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math., 12 (1962), 481-498.
  • T. Dube, Some ring-theoretic properties of almost $P$-frames, Algebra Universalis, 60(2) (2009), 145-162.
  • T. Dube, Rings in which sums of $d$-ideals are $d$-ideals, J. Korean Math. Soc., 56(2) (2019), 539-558.
  • T. Dube and L. Sithole, On the sublocale of an algebraic frame induced by the $d$-nucleus, Topology Appl., 263 (2019), 90-106.
  • A. Facchini, C. A. Finocchiaro and G. Janelidze, Abstractly constructed prime spectra, Algebra Universalis, 83(1) (2022), 8 (38 pp).
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces I, Nederl. Akad. Wetensch. Indag. Math., 42(2) (1980), 183-195.
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces II, Nederl. Akad. Wetensch. Indag. Math., 42(4) (1980), 391-408.
  • C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math., 15(8) (1984), 855-864.
  • C. S. Manjarekar and A. N. Chavan, $z$-elements and $z_j$-elements in multiplicative lattices, Palest. J. Math., 8(1) (2019), 138-147.
  • J. Martinez and E. Zenk, When an algebraic frame is regular, Algebra Universalis, 50(2) (2003), 231-257.
  • G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japon., 34(6) (1989), 941-956.
  • C. J. Mulvey, &, Second topology conference (Taormina, 1984), Rend. Circ. Mat. Palermo (2) Suppl., 12 (1986), 99-104.
  • S. B. Niefield and K. I. Rosenthal, Constructing locales from quantales, Math. Proc. Cambridge Philos. Soc., 104(2) (1988), 215-234.
  • B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces III, Nederl. Akad. Wetensch. Indag. Math., 43(4) (1981), 409-422.
  • S. Safaeeyan and A. Taherifar, $d$-ideals, $fd$-ideals and prime ideals, Quaest. Math., 42(6) (2019), 717-732.
  • H. Simmons, A framework for topology, Stud. Logic Found. Math., 96 (1978), 239-251.
  • T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), 257-263.
  • M. Ward, Residuation in structures over which a multiplication is defined, Duke Math. J., 3(4) (1937), 627-636.
  • M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45(3) (1939), 335-354.
There are 30 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Amartya Goswami

Themba Dube

Early Pub Date July 24, 2024
Publication Date January 14, 2025
Submission Date June 6, 2024
Acceptance Date July 3, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Goswami, A., & Dube, T. (2025). Revisiting Baer elements. International Electronic Journal of Algebra, 37(37), 201-219. https://doi.org/10.24330/ieja.1521082
AMA Goswami A, Dube T. Revisiting Baer elements. IEJA. January 2025;37(37):201-219. doi:10.24330/ieja.1521082
Chicago Goswami, Amartya, and Themba Dube. “Revisiting Baer Elements”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 201-19. https://doi.org/10.24330/ieja.1521082.
EndNote Goswami A, Dube T (January 1, 2025) Revisiting Baer elements. International Electronic Journal of Algebra 37 37 201–219.
IEEE A. Goswami and T. Dube, “Revisiting Baer elements”, IEJA, vol. 37, no. 37, pp. 201–219, 2025, doi: 10.24330/ieja.1521082.
ISNAD Goswami, Amartya - Dube, Themba. “Revisiting Baer Elements”. International Electronic Journal of Algebra 37/37 (January 2025), 201-219. https://doi.org/10.24330/ieja.1521082.
JAMA Goswami A, Dube T. Revisiting Baer elements. IEJA. 2025;37:201–219.
MLA Goswami, Amartya and Themba Dube. “Revisiting Baer Elements”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 201-19, doi:10.24330/ieja.1521082.
Vancouver Goswami A, Dube T. Revisiting Baer elements. IEJA. 2025;37(37):201-19.