Research Article
BibTex RIS Cite

Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space

Year 2022, , 11 - 19, 30.04.2022
https://doi.org/10.36890/iejg.1064158

Abstract

We define the curves family of the surfaces with null profile curve and null axis, and give some smooth functions in three dimensional Lorentz-Minkowski space $\mathbb{L}^{3}$. In addition, we compute the third Laplace-Beltrami operator of this type surfaces.

References

  • Baikoussis, Chr., Koufogiorgos, T.: Helicoidal surfaces with prescribed mean or a Gaussian curvature. J. Geom. 63, 25–29 (1998).
  • Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J.: A classification of surfaces of revolution of constant Gaussian curvature in the Minkowski space R3 1. Bull. Calcutta Math. Soc. 90, 441–458 (1998).
  • Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J.: Helicoidal surfaces in three-dimensional Minkowski space. J. Math. Anal. Appl. 275, 586–614 (2002).
  • Bobenko, A.I.: Constant mean curvature surfaces and integrable equations. Russian Math. Soc. 46, 1–45 (1991).
  • Do Carmo, M.P., Dajczer, M.: Helicoidal surfaces with constant mean curvature. Tohôku Math. J. 34, 425–435 (1982).
  • Choi, S.M.: On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space. Tsukuba J. Math. 19, 351–366 (1996).
  • Crambin, M., Pirani, F.A.E.: Applicable Differential Geometry. London Math. Soc. Lecture Notes Series, Vol. 59, Cambridge Un. Press, London, (1986).
  • Dillen, F., Kühnel, W.: Ruled Weingarten surfaces in Minkowski 3-space. Manuscripta Math. 98, 307–320 (1999).
  • Eisenhart, L.: A Treastise on the Differential Geometry of Curves and Surfaces. Palermo 41 Ginn and Company, USA (1909).
  • Güler, E.: Bour’s theorem and light-like profile curve. Yokohama Math. J. 54 (1) 55–77 (2007).
  • Güler, E., Vanlı, A.: Bour’s theorem in Minkowski 3-space. J. Math. Kyoto. 46 (1) 47–63 (2006).
  • Güler, E., Yaylı, Y., Hacısaliho˘glu, H.H.: Bour’s theorem on Gauss map in Euclidean 3-space. Hacett. J. Math. Stat., 39 (4), 515–525 (2010).
  • Hano, J., Nomizu, K.: Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space. Tohoku Math. J. 36, 427–437 (1984).
  • Hitt, L., Roussos, I.: Computer graphics of helicoidal surfaces with constant mean curvature. An. Acad. Brasil. Ciênc. 63, 211–228 (1991).
  • Kaimakamis, G., Papantoniou, B., Petoumenos, K.: Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ∆III r = Ar. Bull. Greek Math. Soc. 50, 75–90 (2005).
  • Kenmotsu, K.: Surfaces of revolution with prescribed mean curvature. Tohôku Math. J. 32 (1980), 147–153.
  • Sasahara, N.: Spacelike helicoidal surfaces with constant mean curvature in Minkowski 3-space. Tokyo J.Math. 23, 477–502 (2000).
  • Struik, D.J.: Lectures on Differential Geometry. Addison-Wesley, New-York, (1961).
Year 2022, , 11 - 19, 30.04.2022
https://doi.org/10.36890/iejg.1064158

Abstract

References

  • Baikoussis, Chr., Koufogiorgos, T.: Helicoidal surfaces with prescribed mean or a Gaussian curvature. J. Geom. 63, 25–29 (1998).
  • Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J.: A classification of surfaces of revolution of constant Gaussian curvature in the Minkowski space R3 1. Bull. Calcutta Math. Soc. 90, 441–458 (1998).
  • Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J.: Helicoidal surfaces in three-dimensional Minkowski space. J. Math. Anal. Appl. 275, 586–614 (2002).
  • Bobenko, A.I.: Constant mean curvature surfaces and integrable equations. Russian Math. Soc. 46, 1–45 (1991).
  • Do Carmo, M.P., Dajczer, M.: Helicoidal surfaces with constant mean curvature. Tohôku Math. J. 34, 425–435 (1982).
  • Choi, S.M.: On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space. Tsukuba J. Math. 19, 351–366 (1996).
  • Crambin, M., Pirani, F.A.E.: Applicable Differential Geometry. London Math. Soc. Lecture Notes Series, Vol. 59, Cambridge Un. Press, London, (1986).
  • Dillen, F., Kühnel, W.: Ruled Weingarten surfaces in Minkowski 3-space. Manuscripta Math. 98, 307–320 (1999).
  • Eisenhart, L.: A Treastise on the Differential Geometry of Curves and Surfaces. Palermo 41 Ginn and Company, USA (1909).
  • Güler, E.: Bour’s theorem and light-like profile curve. Yokohama Math. J. 54 (1) 55–77 (2007).
  • Güler, E., Vanlı, A.: Bour’s theorem in Minkowski 3-space. J. Math. Kyoto. 46 (1) 47–63 (2006).
  • Güler, E., Yaylı, Y., Hacısaliho˘glu, H.H.: Bour’s theorem on Gauss map in Euclidean 3-space. Hacett. J. Math. Stat., 39 (4), 515–525 (2010).
  • Hano, J., Nomizu, K.: Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space. Tohoku Math. J. 36, 427–437 (1984).
  • Hitt, L., Roussos, I.: Computer graphics of helicoidal surfaces with constant mean curvature. An. Acad. Brasil. Ciênc. 63, 211–228 (1991).
  • Kaimakamis, G., Papantoniou, B., Petoumenos, K.: Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ∆III r = Ar. Bull. Greek Math. Soc. 50, 75–90 (2005).
  • Kenmotsu, K.: Surfaces of revolution with prescribed mean curvature. Tohôku Math. J. 32 (1980), 147–153.
  • Sasahara, N.: Spacelike helicoidal surfaces with constant mean curvature in Minkowski 3-space. Tokyo J.Math. 23, 477–502 (2000).
  • Struik, D.J.: Lectures on Differential Geometry. Addison-Wesley, New-York, (1961).
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Erhan Güler 0000-0003-3264-6239

Publication Date April 30, 2022
Acceptance Date March 9, 2022
Published in Issue Year 2022

Cite

APA Güler, E. (2022). Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space. International Electronic Journal of Geometry, 15(1), 11-19. https://doi.org/10.36890/iejg.1064158
AMA Güler E. Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space. Int. Electron. J. Geom. April 2022;15(1):11-19. doi:10.36890/iejg.1064158
Chicago Güler, Erhan. “Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space”. International Electronic Journal of Geometry 15, no. 1 (April 2022): 11-19. https://doi.org/10.36890/iejg.1064158.
EndNote Güler E (April 1, 2022) Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space. International Electronic Journal of Geometry 15 1 11–19.
IEEE E. Güler, “Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space”, Int. Electron. J. Geom., vol. 15, no. 1, pp. 11–19, 2022, doi: 10.36890/iejg.1064158.
ISNAD Güler, Erhan. “Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space”. International Electronic Journal of Geometry 15/1 (April 2022), 11-19. https://doi.org/10.36890/iejg.1064158.
JAMA Güler E. Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space. Int. Electron. J. Geom. 2022;15:11–19.
MLA Güler, Erhan. “Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space”. International Electronic Journal of Geometry, vol. 15, no. 1, 2022, pp. 11-19, doi:10.36890/iejg.1064158.
Vancouver Güler E. Rulings on the Surfaces Having Null Axis and Null Profile Curve in Lorentz-Minkowski 3-Space. Int. Electron. J. Geom. 2022;15(1):11-9.