Research Article
BibTex RIS Cite

Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space

Year 2023, , 62 - 72, 30.04.2023
https://doi.org/10.36890/iejg.1179503

Abstract

The main goal of this study is to bring together the spinors, which have a major place in several disciplines from mathematics to physics, and Positional Adapted Frame (PAF) which is a new type frame that attracts the attention of many researchers. In accordance with this purpose, we introduce the spinor representations for the trajectories endowed with PAF in the Euclidean 3-space $\mathbb{E}^3$, and construct the spinor equations of PAF vectors. Then, we find the relations between spinor representations of PAF and Serret-Frenet frame. Also we give some results and present some geometric interpretations with respect to this relationship. Moreover, we present an illustrative numerical example in order to support the given theorems and results.

References

  • [1] Balcı, Y., Erişir, T., Güngör, M. A.: Hyperbolic spinor Darboux equations of spacelike curves in Minkowski 3-space. J. Chungcheong Math. Soc. 28 (4), 525-535 (2015).
  • [2] Bishop, R. L.: There is more than one way to frame a curve. Amer. Math. Monthly. 82 (3), 246-251 (1975).
  • [3] Cartan, E.: The theory of spinors. Herman. Paris (1966), reprinted by Dover. New York (1981).
  • [4] Chen, B. Y.: When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly. 110 (2), 147-152 (2003).
  • [5] Clifford, W. K.: Applications of Grassmann’s extensive algebra. Amer. J. Math. 1 (4), 350-358 (1878).
  • [6] Darboux, G.: Leçons sur la thèorie gènèrale des surfaces I-II-III-IV. Gauthier-Villars. Paris (1896).
  • [7] Dede, M.: A new representation of tubular surfaces. Houston J. Math. 45 (3), 707-720 (2019).
  • [8] Dede, M., Ekici, C., Tozak, H.: Directional tubular surfaces. Int. J. Algebra. 9 (12), 527-535 (2015).
  • [9] del Castillo, G. F. T.: 3-D Spinors, Spin-weighted functions and their applications. Birkhäuser. Boston (2003).
  • [10] del Castillo, G. F. T, Sánchez Barrales, G.: Spinor formulation of the differential geometry of curves. Rev. Colomb. Mat. 38 (1), 27-34 (2004). [11] Erişir, T.: On spinor construction of Bertrand curves. AIMS Mathematics. 6 (4), 3583-3591 (2021).
  • [12] Erişir, T., Güngör, M. A., Tosun, M.: Geometry of the hyperbolic spinors corresponding to alternative frame. Adv. Appl. Clifford Algebras. 25 (4), 799-810 (2015).
  • [13] Erişir, T., Güngör, M. A.: On Fibonacci spinors. Int. J. Geom. Methods Mod. Phys. 17, 2050065 (2020).
  • [14] Erişir, T., Karda˘ g, N. C.: Spinor representations of involute evolute curves in E3. Fundam. J. Math. Appl. 2 (2), 148-155 (2019).
  • [15] Erişir, T., Öztaş, H. K.: Spinor equations of successor curves. Univers. J. Math. Appl. 5 (1), 32-41 (2022).
  • [16] Gürbüz, N. E.: The evolution of an electric field with respect to the type-1 PAF and the PAFORS frames in R31 . Optik. 250 (1), 168285 (2022).
  • [17] Hladik, J.: Spinors in physics. Springer Science & Business Media. New York (1999).
  • [18] Iyer, B. R., Vishveshwara, C. V.: Frenet-Serret description of gyroscopic precession. Physical Review D. 48 (12), 5706 (1993).
  • [19] İlarslan, K., Nesoviç, E.: Some characterizations of osculating curves in the Euclidean spaces. Demonstr. Math. 41 (4), 931-939 (2008).
  • [20] İşbilir, Z., Özen, K. E., Tosun, M.: Mannheim partner P-trajectories in the Euclidean 3-Space E3. Honam Math. J. 44 (3), 419-431 (2022).
  • [21] İşbilir, Z., Yazıcı, B. D., Tosun, M.: The spinor representations of framed Bertrand curves. Filomat. 37 (9), 2831–2843 (2023).
  • [22] Keskin, O., Yaylı, Y.: An application of N-Bishop frame to spherical images for direction curves. Int. J. Geom. Methods Mod. Phys. 14 (11), 1750162 (2017).
  • [23] Ketenci, Z., Erişir, T., Güngör, M. A.: Spinor equations of curves in Minkowski space. V. Congress of the Turkic World Mathematicians, June 05-07 2014, Issyk, Kyrgyzstan.
  • [24] Ketenci, Z., Erişir, T., Güngör, M. A.: A construction of hyperbolic spinors according to Frenet frame in Minkowski space. Journal of Dynamical Systems and Geometric Theories. 13 (2), 179-193 (2015).
  • [25] Kişi, İ., Tosun, M.: Spinor Darboux equations of curves in Euclidean 3-space. Mathematica Moravica. 19 (1), 87-93 (2015).
  • [26] Koenderink, J. J.: Solid shape. MIT Press. Cambridge. Massachusetts (1990).
  • [27] Lounesto, P.: Clifford algebras and spinors. In: Clifford Algebras and their Applications in Mathematical Physics. Vol. 183. Springer, Dordrecht (1986).
  • [28] Lounesto, P.: Clifford algebras and spinors. Cambridge University Press. Cambridge (2001).
  • [29] Özen, K. E.,İşbilir, Z., Tosun, M.: Characterization of Tzitzéica curves using positional adapted frame. Konuralp Journal of Mathematics. 10 (2), 260-268 (2022).
  • [30] Özen, K. E., Tosun, M.: A new moving frame for trajectories with non-vanishing angular momentum. J. Math. Sci. Model. 4 (1), 7-18 (2021).
  • [31] Özen, K. E., Tosun, M.: Trajectories generated by special Smarandache curves according to positional adapted frame. Karamano˘glu Mehmetbey University Journal of Engineering and Natural Sciences. 3 (1), 15-23 (2021).
  • [32] Pauli, W.: Zur quantenmechanik des magnetischen elektrons. Zeitschrift für Physik. 43, 601-623 (1927).
  • [33] Shifrin, T.: Differential geometry: A first course in curves and surfaces. University of Georgia. Preliminary Version (2008).
  • [34] Soliman, M. A., Abdel-All, N. H., Hussien, R. A., Youssef, T.: Evolution of space curves using type-3 Bishop frame. Casp. J. Math. Sci. 8 (1), 58-73 (2019).
  • [35] Solouma, E. M.: Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF. Bull. Math. Anal. Appl. 13 (4), 14-30 (2021).
  • [36] Şenyurt, S., Çalışkan, A.: Spinor formulation of Sabban frame of curve on S2. Pure Mathematical Sciences. 4 (1), 37-42 (2015).
  • [37] Tomonaga, S. I.: The story of spin. University of Chicago Press. Chicago (1997).
  • [38] Ünal, D., Kişi, İ., Tosun, M.: Spinor Bishop equations of curves in Euclidean 3-space. Adv. Appl. Clifford Algebras. 23 (3), 757-765 (2013).
  • [39] Vaz, J., da Rocha, R.: An introduction to Clifford algebras and spinors. Oxford University Press. London (2016).
  • [40] Vivarelli, M. D.: Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem. Celestial Mechanics. 32 (3), 193-207 (1984).
  • [41] Wang, X. F., Zou, Z. J., Li, T. S., Luo, W. L.: Adaptive path following controller of underactuated ships using Serret-Frenet frame. Journal of Shanghai Jiaotong University (Science). 15 (3), 334-339 (2010).
  • [42] Yazıcı, B. D., İşbilir, Z., Tosun, M.: Spinor representation of framed Mannheim curves. Turk. J. Math. 46 (7), 2690-2700 (2022).
  • [43] Yılmaz, S., Turgut, M.: A new version of Bishop frame and an application to spherical images. J. Math. Anal. Appl. 371 (2), 764-776 (2010).
Year 2023, , 62 - 72, 30.04.2023
https://doi.org/10.36890/iejg.1179503

Abstract

References

  • [1] Balcı, Y., Erişir, T., Güngör, M. A.: Hyperbolic spinor Darboux equations of spacelike curves in Minkowski 3-space. J. Chungcheong Math. Soc. 28 (4), 525-535 (2015).
  • [2] Bishop, R. L.: There is more than one way to frame a curve. Amer. Math. Monthly. 82 (3), 246-251 (1975).
  • [3] Cartan, E.: The theory of spinors. Herman. Paris (1966), reprinted by Dover. New York (1981).
  • [4] Chen, B. Y.: When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly. 110 (2), 147-152 (2003).
  • [5] Clifford, W. K.: Applications of Grassmann’s extensive algebra. Amer. J. Math. 1 (4), 350-358 (1878).
  • [6] Darboux, G.: Leçons sur la thèorie gènèrale des surfaces I-II-III-IV. Gauthier-Villars. Paris (1896).
  • [7] Dede, M.: A new representation of tubular surfaces. Houston J. Math. 45 (3), 707-720 (2019).
  • [8] Dede, M., Ekici, C., Tozak, H.: Directional tubular surfaces. Int. J. Algebra. 9 (12), 527-535 (2015).
  • [9] del Castillo, G. F. T.: 3-D Spinors, Spin-weighted functions and their applications. Birkhäuser. Boston (2003).
  • [10] del Castillo, G. F. T, Sánchez Barrales, G.: Spinor formulation of the differential geometry of curves. Rev. Colomb. Mat. 38 (1), 27-34 (2004). [11] Erişir, T.: On spinor construction of Bertrand curves. AIMS Mathematics. 6 (4), 3583-3591 (2021).
  • [12] Erişir, T., Güngör, M. A., Tosun, M.: Geometry of the hyperbolic spinors corresponding to alternative frame. Adv. Appl. Clifford Algebras. 25 (4), 799-810 (2015).
  • [13] Erişir, T., Güngör, M. A.: On Fibonacci spinors. Int. J. Geom. Methods Mod. Phys. 17, 2050065 (2020).
  • [14] Erişir, T., Karda˘ g, N. C.: Spinor representations of involute evolute curves in E3. Fundam. J. Math. Appl. 2 (2), 148-155 (2019).
  • [15] Erişir, T., Öztaş, H. K.: Spinor equations of successor curves. Univers. J. Math. Appl. 5 (1), 32-41 (2022).
  • [16] Gürbüz, N. E.: The evolution of an electric field with respect to the type-1 PAF and the PAFORS frames in R31 . Optik. 250 (1), 168285 (2022).
  • [17] Hladik, J.: Spinors in physics. Springer Science & Business Media. New York (1999).
  • [18] Iyer, B. R., Vishveshwara, C. V.: Frenet-Serret description of gyroscopic precession. Physical Review D. 48 (12), 5706 (1993).
  • [19] İlarslan, K., Nesoviç, E.: Some characterizations of osculating curves in the Euclidean spaces. Demonstr. Math. 41 (4), 931-939 (2008).
  • [20] İşbilir, Z., Özen, K. E., Tosun, M.: Mannheim partner P-trajectories in the Euclidean 3-Space E3. Honam Math. J. 44 (3), 419-431 (2022).
  • [21] İşbilir, Z., Yazıcı, B. D., Tosun, M.: The spinor representations of framed Bertrand curves. Filomat. 37 (9), 2831–2843 (2023).
  • [22] Keskin, O., Yaylı, Y.: An application of N-Bishop frame to spherical images for direction curves. Int. J. Geom. Methods Mod. Phys. 14 (11), 1750162 (2017).
  • [23] Ketenci, Z., Erişir, T., Güngör, M. A.: Spinor equations of curves in Minkowski space. V. Congress of the Turkic World Mathematicians, June 05-07 2014, Issyk, Kyrgyzstan.
  • [24] Ketenci, Z., Erişir, T., Güngör, M. A.: A construction of hyperbolic spinors according to Frenet frame in Minkowski space. Journal of Dynamical Systems and Geometric Theories. 13 (2), 179-193 (2015).
  • [25] Kişi, İ., Tosun, M.: Spinor Darboux equations of curves in Euclidean 3-space. Mathematica Moravica. 19 (1), 87-93 (2015).
  • [26] Koenderink, J. J.: Solid shape. MIT Press. Cambridge. Massachusetts (1990).
  • [27] Lounesto, P.: Clifford algebras and spinors. In: Clifford Algebras and their Applications in Mathematical Physics. Vol. 183. Springer, Dordrecht (1986).
  • [28] Lounesto, P.: Clifford algebras and spinors. Cambridge University Press. Cambridge (2001).
  • [29] Özen, K. E.,İşbilir, Z., Tosun, M.: Characterization of Tzitzéica curves using positional adapted frame. Konuralp Journal of Mathematics. 10 (2), 260-268 (2022).
  • [30] Özen, K. E., Tosun, M.: A new moving frame for trajectories with non-vanishing angular momentum. J. Math. Sci. Model. 4 (1), 7-18 (2021).
  • [31] Özen, K. E., Tosun, M.: Trajectories generated by special Smarandache curves according to positional adapted frame. Karamano˘glu Mehmetbey University Journal of Engineering and Natural Sciences. 3 (1), 15-23 (2021).
  • [32] Pauli, W.: Zur quantenmechanik des magnetischen elektrons. Zeitschrift für Physik. 43, 601-623 (1927).
  • [33] Shifrin, T.: Differential geometry: A first course in curves and surfaces. University of Georgia. Preliminary Version (2008).
  • [34] Soliman, M. A., Abdel-All, N. H., Hussien, R. A., Youssef, T.: Evolution of space curves using type-3 Bishop frame. Casp. J. Math. Sci. 8 (1), 58-73 (2019).
  • [35] Solouma, E. M.: Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF. Bull. Math. Anal. Appl. 13 (4), 14-30 (2021).
  • [36] Şenyurt, S., Çalışkan, A.: Spinor formulation of Sabban frame of curve on S2. Pure Mathematical Sciences. 4 (1), 37-42 (2015).
  • [37] Tomonaga, S. I.: The story of spin. University of Chicago Press. Chicago (1997).
  • [38] Ünal, D., Kişi, İ., Tosun, M.: Spinor Bishop equations of curves in Euclidean 3-space. Adv. Appl. Clifford Algebras. 23 (3), 757-765 (2013).
  • [39] Vaz, J., da Rocha, R.: An introduction to Clifford algebras and spinors. Oxford University Press. London (2016).
  • [40] Vivarelli, M. D.: Development of spinor descriptions of rotational mechanics from Euler’s rigid body displacement theorem. Celestial Mechanics. 32 (3), 193-207 (1984).
  • [41] Wang, X. F., Zou, Z. J., Li, T. S., Luo, W. L.: Adaptive path following controller of underactuated ships using Serret-Frenet frame. Journal of Shanghai Jiaotong University (Science). 15 (3), 334-339 (2010).
  • [42] Yazıcı, B. D., İşbilir, Z., Tosun, M.: Spinor representation of framed Mannheim curves. Turk. J. Math. 46 (7), 2690-2700 (2022).
  • [43] Yılmaz, S., Turgut, M.: A new version of Bishop frame and an application to spherical images. J. Math. Anal. Appl. 371 (2), 764-776 (2010).
There are 42 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Zehra İşbilir 0000-0001-5414-5887

Kahraman Esen Özen 0000-0002-3299-6709

Mehmet Güner 0000-0002-3843-9436

Publication Date April 30, 2023
Acceptance Date March 28, 2023
Published in Issue Year 2023

Cite

APA İşbilir, Z., Özen, K. E., & Güner, M. (2023). Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space. International Electronic Journal of Geometry, 16(1), 62-72. https://doi.org/10.36890/iejg.1179503
AMA İşbilir Z, Özen KE, Güner M. Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space. Int. Electron. J. Geom. April 2023;16(1):62-72. doi:10.36890/iejg.1179503
Chicago İşbilir, Zehra, Kahraman Esen Özen, and Mehmet Güner. “Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 62-72. https://doi.org/10.36890/iejg.1179503.
EndNote İşbilir Z, Özen KE, Güner M (April 1, 2023) Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space. International Electronic Journal of Geometry 16 1 62–72.
IEEE Z. İşbilir, K. E. Özen, and M. Güner, “Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 62–72, 2023, doi: 10.36890/iejg.1179503.
ISNAD İşbilir, Zehra et al. “Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space”. International Electronic Journal of Geometry 16/1 (April 2023), 62-72. https://doi.org/10.36890/iejg.1179503.
JAMA İşbilir Z, Özen KE, Güner M. Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space. Int. Electron. J. Geom. 2023;16:62–72.
MLA İşbilir, Zehra et al. “Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 62-72, doi:10.36890/iejg.1179503.
Vancouver İşbilir Z, Özen KE, Güner M. Spinor Representations of Positional Adapted Frame in the Euclidean 3-Space. Int. Electron. J. Geom. 2023;16(1):62-7.