Year 2023,
, 689 - 696, 29.10.2023
Lorenz Halbeısen
,
Norbert Hungerbühler
,
Vanessa Loureiro
References
- [1] Benz, W.: Über Möbiusebenen. Jahresbericht der Deutschen Mathematiker-Vereinigung. 63 (Abt. 1), 1–27 (1960).
- [2] Chen, Y.: Der Satz von Miquel in der Möbiusebene. Mathematische Annalen. 186, 81–100 (1970).
- [3] Dembowski, P.: Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin-New York (1968).
- [4] Hering, C.: Eine Klassifikation der Möbius-Ebenen. Mathematische Zeitschrift. 87, 252–262 (1965).
- [5] Krier, N.: The Hering classification of Möbius planes. In: Proceedings of the International Conference on Projective Planes, Washington State
Univerity, Pullman, Wash., 1973. Washington State University Press, Pullman. 157–163 (1973).
- [6] Li, H., Xu, R., Zhang, N.: On Miquel’s five-circle theorem. In: Hongbo Li, Peter J. Olver, and Gerald Sommer (eds). Computer Algebra and
Geometric Algebra with Applications. Springer, Berlin Heidelberg. 217–228 (2005).
- [7] Miquel, A.: Théorèmes de géométrie. Journal de Mathématiques Pures et Appliquées. 3, 485–487 (1838).
The Pentagon Theorem in Miquelian Möbius Planes
Year 2023,
, 689 - 696, 29.10.2023
Lorenz Halbeısen
,
Norbert Hungerbühler
,
Vanessa Loureiro
Abstract
We give an algebraic proof of the Pentagon Theorem. The proof works in all Miquelian Möbius planes obtained from a separable quadratic field extension. In particular, the theorem holds in every finite Miquelian plane. The arguments also reveal that the five concyclic points in the Pentagon Theorem are either pairwise distinct or identical to one single point. In addition we identify five additional quintuples of points in the pentagon configuration which are concyclic.
References
- [1] Benz, W.: Über Möbiusebenen. Jahresbericht der Deutschen Mathematiker-Vereinigung. 63 (Abt. 1), 1–27 (1960).
- [2] Chen, Y.: Der Satz von Miquel in der Möbiusebene. Mathematische Annalen. 186, 81–100 (1970).
- [3] Dembowski, P.: Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin-New York (1968).
- [4] Hering, C.: Eine Klassifikation der Möbius-Ebenen. Mathematische Zeitschrift. 87, 252–262 (1965).
- [5] Krier, N.: The Hering classification of Möbius planes. In: Proceedings of the International Conference on Projective Planes, Washington State
Univerity, Pullman, Wash., 1973. Washington State University Press, Pullman. 157–163 (1973).
- [6] Li, H., Xu, R., Zhang, N.: On Miquel’s five-circle theorem. In: Hongbo Li, Peter J. Olver, and Gerald Sommer (eds). Computer Algebra and
Geometric Algebra with Applications. Springer, Berlin Heidelberg. 217–228 (2005).
- [7] Miquel, A.: Théorèmes de géométrie. Journal de Mathématiques Pures et Appliquées. 3, 485–487 (1838).