Research Article
BibTex RIS Cite

On a Quarter-Symmetric Projective Conformal Connection

Year 2017, , 37 - 45, 29.10.2017
https://doi.org/10.36890/iejg.545046

Abstract

We introduce a class of quarter-symmetric projective conformal connections, and study the
geometrical properties of a manifold associated with this connection. The Schur’s theorem
corresponding to the quarter-symmetric projective conformal connection is derived.

References

  • [1] De, U. C. and Biswas, S. C., Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series Al.. 46(1997), 49-56.
  • [2] De, U. C. and Biswas, S. C., On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math.(Beograd)(N. S. ). 61(1997), no.75, 90-96.
  • [3] De, U. C. and Kamilya, D., Hypersurfaces of Kenmotsu manifolds endowed with a quarter-symmetric non-metric connection , Kuwait J. Sci. Eng.. 39( 2012), no.1A, 43-56.
  • [4] De, U. C. and Mondal, A. K., Quarter-symmetric metric connection on 3-dimensional quasi-Sasakian manifolds, SUT Journal of Mathematics. 46(2010), no.1, 35-52.
  • [5] De, U. C. and Sengupta, J., On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Cal. Math. Soc.. 92(2000),375-884.
  • [6] Fridman, A. and Schouten, J. A., Uber die Geometric der halb-symmerischen Ubertrngungen, Math.Zeitschift. 21(1924), 211-233.
  • [7] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat. 27(2013), no.4, 679-691.
  • [8] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., A Schur’s lemma based on a semi-symmetric non-metric connection, International Journal of Geometry. 5(2016), no.1, 47-53.
  • [9] Han, Y. L. and Zhao, P. B., A Class of nearly sub-Weyl and sub-Lyra Manifolds, accepted in International Electronic Journal of Geometry. (2016).
  • [10] Hayden, H. A., Subspace of space with torsion, Proc. of London Math. Soc.. 24 (1932), 27-50.
  • [11] Stepanova, E. S., Dual symmetric statistical manifold. J. of Mathematical Sciences. 147(2007), no.1, 6507-6509.
  • [12] Yano, K., On semi-symmetric metric connection, Rev. Roun. Math. Purest. Appl.. 15(1971), 1579-1586.
  • [13] Yano, K. and Imai, J., Quarter-symmetric metric connection and their curvature tensors, Tensor. N. S.. 38(1982), 13-18.
  • [14] Ho, Tal Yun., On a semi-symmetric non-metric connection satisfying the Schur’s theorem on a Riemannian manifold, arXiv:1212,4748v1.
  • [15] Ho, Tal Yun., On the projective semi-symmetric connection and the conformal semi-symmetric connection on the Riemannian manifold, J. of Kim Il Sung University (Natural Science). 2(2013), no.2, 3-10.
  • [16] Ho, Tal Yun., An, Jae Hyon and An, Chang Gil., Some properties of mutual connection of semi-symmetric metric connection and its dual connection in a Riemannian manifold, Acta Scientiarum Naturalium Universtatis Nankaiensts. 46(2013), no.4, 1-8.
  • [17] Ho, Tal Yun., Jen, Cholyong and Jin, Guangzhi., A semi-symmetric projective conformal connection satisfying the Schur’s theorem on a Riemannian manifold, J. of Yanbian University (Natural Science). 40(2014), no.4, 290-294.
  • [18] Zhao, P. B., Some properties of projective semi-symmetric connections, International Mathematical Forum. 3(2008), no. 7, 341-347.
  • [19] Zhao, P. B. and Song, H. Z., An invariant of the projective semi-symmetric connection, Chinese Quarterly J. of Math.. 17(2001), no. 4, 48-52.
  • [20] Zhao, P. B., Song, H. Z. and Yang, X. P., Some invariant properties of the semi-symmetric metric recurrent connections and curvature tensor expressions, Chinese Quarterly J. of Math.. 19(2004), no. 4, 355-361.
Year 2017, , 37 - 45, 29.10.2017
https://doi.org/10.36890/iejg.545046

Abstract

References

  • [1] De, U. C. and Biswas, S. C., Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series Al.. 46(1997), 49-56.
  • [2] De, U. C. and Biswas, S. C., On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math.(Beograd)(N. S. ). 61(1997), no.75, 90-96.
  • [3] De, U. C. and Kamilya, D., Hypersurfaces of Kenmotsu manifolds endowed with a quarter-symmetric non-metric connection , Kuwait J. Sci. Eng.. 39( 2012), no.1A, 43-56.
  • [4] De, U. C. and Mondal, A. K., Quarter-symmetric metric connection on 3-dimensional quasi-Sasakian manifolds, SUT Journal of Mathematics. 46(2010), no.1, 35-52.
  • [5] De, U. C. and Sengupta, J., On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Cal. Math. Soc.. 92(2000),375-884.
  • [6] Fridman, A. and Schouten, J. A., Uber die Geometric der halb-symmerischen Ubertrngungen, Math.Zeitschift. 21(1924), 211-233.
  • [7] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat. 27(2013), no.4, 679-691.
  • [8] Han, Y. L., Ho, Tal Yun. and Zhao, P. B., A Schur’s lemma based on a semi-symmetric non-metric connection, International Journal of Geometry. 5(2016), no.1, 47-53.
  • [9] Han, Y. L. and Zhao, P. B., A Class of nearly sub-Weyl and sub-Lyra Manifolds, accepted in International Electronic Journal of Geometry. (2016).
  • [10] Hayden, H. A., Subspace of space with torsion, Proc. of London Math. Soc.. 24 (1932), 27-50.
  • [11] Stepanova, E. S., Dual symmetric statistical manifold. J. of Mathematical Sciences. 147(2007), no.1, 6507-6509.
  • [12] Yano, K., On semi-symmetric metric connection, Rev. Roun. Math. Purest. Appl.. 15(1971), 1579-1586.
  • [13] Yano, K. and Imai, J., Quarter-symmetric metric connection and their curvature tensors, Tensor. N. S.. 38(1982), 13-18.
  • [14] Ho, Tal Yun., On a semi-symmetric non-metric connection satisfying the Schur’s theorem on a Riemannian manifold, arXiv:1212,4748v1.
  • [15] Ho, Tal Yun., On the projective semi-symmetric connection and the conformal semi-symmetric connection on the Riemannian manifold, J. of Kim Il Sung University (Natural Science). 2(2013), no.2, 3-10.
  • [16] Ho, Tal Yun., An, Jae Hyon and An, Chang Gil., Some properties of mutual connection of semi-symmetric metric connection and its dual connection in a Riemannian manifold, Acta Scientiarum Naturalium Universtatis Nankaiensts. 46(2013), no.4, 1-8.
  • [17] Ho, Tal Yun., Jen, Cholyong and Jin, Guangzhi., A semi-symmetric projective conformal connection satisfying the Schur’s theorem on a Riemannian manifold, J. of Yanbian University (Natural Science). 40(2014), no.4, 290-294.
  • [18] Zhao, P. B., Some properties of projective semi-symmetric connections, International Mathematical Forum. 3(2008), no. 7, 341-347.
  • [19] Zhao, P. B. and Song, H. Z., An invariant of the projective semi-symmetric connection, Chinese Quarterly J. of Math.. 17(2001), no. 4, 48-52.
  • [20] Zhao, P. B., Song, H. Z. and Yang, X. P., Some invariant properties of the semi-symmetric metric recurrent connections and curvature tensor expressions, Chinese Quarterly J. of Math.. 19(2004), no. 4, 355-361.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Wanxiao Tang This is me

Tal Yun Ho This is me

Fengyun Fu This is me

Peibiao Zhao This is me

Publication Date October 29, 2017
Published in Issue Year 2017

Cite

APA Tang, W., Ho, T. Y., Fu, F., Zhao, P. (2017). On a Quarter-Symmetric Projective Conformal Connection. International Electronic Journal of Geometry, 10(2), 37-45. https://doi.org/10.36890/iejg.545046
AMA Tang W, Ho TY, Fu F, Zhao P. On a Quarter-Symmetric Projective Conformal Connection. Int. Electron. J. Geom. October 2017;10(2):37-45. doi:10.36890/iejg.545046
Chicago Tang, Wanxiao, Tal Yun Ho, Fengyun Fu, and Peibiao Zhao. “On a Quarter-Symmetric Projective Conformal Connection”. International Electronic Journal of Geometry 10, no. 2 (October 2017): 37-45. https://doi.org/10.36890/iejg.545046.
EndNote Tang W, Ho TY, Fu F, Zhao P (October 1, 2017) On a Quarter-Symmetric Projective Conformal Connection. International Electronic Journal of Geometry 10 2 37–45.
IEEE W. Tang, T. Y. Ho, F. Fu, and P. Zhao, “On a Quarter-Symmetric Projective Conformal Connection”, Int. Electron. J. Geom., vol. 10, no. 2, pp. 37–45, 2017, doi: 10.36890/iejg.545046.
ISNAD Tang, Wanxiao et al. “On a Quarter-Symmetric Projective Conformal Connection”. International Electronic Journal of Geometry 10/2 (October 2017), 37-45. https://doi.org/10.36890/iejg.545046.
JAMA Tang W, Ho TY, Fu F, Zhao P. On a Quarter-Symmetric Projective Conformal Connection. Int. Electron. J. Geom. 2017;10:37–45.
MLA Tang, Wanxiao et al. “On a Quarter-Symmetric Projective Conformal Connection”. International Electronic Journal of Geometry, vol. 10, no. 2, 2017, pp. 37-45, doi:10.36890/iejg.545046.
Vancouver Tang W, Ho TY, Fu F, Zhao P. On a Quarter-Symmetric Projective Conformal Connection. Int. Electron. J. Geom. 2017;10(2):37-45.