[1] Isham, C.J., Modern Differential Geometry for Physicists. World Scientific, 1999.
[2] Fattaev, H., The lifts of vector fields to the semitensor bundle of the Type (2, 0). Journal of Qafqaz University, 25 (2009), no. 1, 136-140.
[3] Gezer, A., Salimov, A.A., Almost complex structures on the tensor bundles. Arab. J. Sci. Eng. Sect. A Sci., 33 (2008), no. 2, 283-296.
[4] Husemoller, D., Fibre Bundles. Springer, New York, 1994.
[5] Lawson, H.B. and Michelsohn, M.L., Spin Geometry. Princeton University Press., Princeton, 1989.
[6] Ledger, A.J. and Yano, K., Almost complex structure on tensor bundles. J. Dif. Geom., 1 (1967), 355-368.
[7] Salimov, A., Tensor Operators and their Applications. Nova Science Publ., New York, 2013.
[8] Salimov, A.A. and Kadıo˘ glu, E., Lifts of derivations to the semitangent bundle. Turk J. Math., 24 (2000), 259-266.
[9] Steenrod, N., The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
[10] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
[11] Yıldırım, F., On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015),
no. 1, 25-38.
[12] Yıldırım, F. and Salimov A., Semi-cotangent bundle and problems of lifts. Turk J. Math., 38 (2014), 325-339.
[13] Yıldırım, F., Note on the cross-section in the semi-tensor bundle. New Trends in Mathematical Sciences, 5 (2017) , no. 2, 212-221.
[14] Yıldırım, F., Asl, M.B. and Jabrailzade, F., Vector and affinor fields on cross-sections in the semi-cotangent bundle. Proceedings of the
Institute of Mathematics and Mechanics, (ANAS) 43 (2017), no. 2, 305-315.
[1] Isham, C.J., Modern Differential Geometry for Physicists. World Scientific, 1999.
[2] Fattaev, H., The lifts of vector fields to the semitensor bundle of the Type (2, 0). Journal of Qafqaz University, 25 (2009), no. 1, 136-140.
[3] Gezer, A., Salimov, A.A., Almost complex structures on the tensor bundles. Arab. J. Sci. Eng. Sect. A Sci., 33 (2008), no. 2, 283-296.
[4] Husemoller, D., Fibre Bundles. Springer, New York, 1994.
[5] Lawson, H.B. and Michelsohn, M.L., Spin Geometry. Princeton University Press., Princeton, 1989.
[6] Ledger, A.J. and Yano, K., Almost complex structure on tensor bundles. J. Dif. Geom., 1 (1967), 355-368.
[7] Salimov, A., Tensor Operators and their Applications. Nova Science Publ., New York, 2013.
[8] Salimov, A.A. and Kadıo˘ glu, E., Lifts of derivations to the semitangent bundle. Turk J. Math., 24 (2000), 259-266.
[9] Steenrod, N., The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
[10] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
[11] Yıldırım, F., On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015),
no. 1, 25-38.
[12] Yıldırım, F. and Salimov A., Semi-cotangent bundle and problems of lifts. Turk J. Math., 38 (2014), 325-339.
[13] Yıldırım, F., Note on the cross-section in the semi-tensor bundle. New Trends in Mathematical Sciences, 5 (2017) , no. 2, 212-221.
[14] Yıldırım, F., Asl, M.B. and Jabrailzade, F., Vector and affinor fields on cross-sections in the semi-cotangent bundle. Proceedings of the
Institute of Mathematics and Mechanics, (ANAS) 43 (2017), no. 2, 305-315.