Research Article
BibTex RIS Cite

Differential Geometry of Rectifying Submanifolds

Year 2016, , 1 - 8, 30.10.2016
https://doi.org/10.36890/iejg.584566

Abstract


References

  • [1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional Euclidean space. Turkish J. Math. 40 (2016), no.1, 210–223.
  • [2] Chen, B.-Y., Geometry of Submanifolds. Marcel Dekker, New York, 1973.
  • [3] Chen, B.-Y., Constant-ratio hypersurfaces. Soochow J. Math. 21 (2001), 353–361.
  • [4] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean space. J. Geom. 74 (2002), 61–77.
  • [5] Chen, B.-Y., Convolution of Riemannian manifolds and its applications. Bull. Austral. Math. Soc. 66 (2002), no. 2, 177–191.
  • [6] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying plane?. Amer. Math. Monthly 110 (2003), no. 2, 147–152.
  • [7] Chen, B.-Y., More on convolution of Riemannian manifolds. Beiträge Algebra Geom. 44 (2003), 9–24.
  • [8] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J. Math. 29 (2003), no. 2, 281–294
  • [9] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications. World Scientific, 2011.
  • [10] Chen, B.-Y., Topics in differential geometry associated with position vector fields on Euclidean submanifolds. Arab J. Math. Sci. 23 (2017), no. 1 (Special Issue on Geometry and Global Analysis), doi:10.1016/j.ajmsc.2016.08.001.
  • [11] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77–90.
  • [12] Gungor, M. A. and Tosun, M., Some characterizations of quaternionic rectifying curves. Differ. Geom. Dyn. Syst. 13 (2011), 89–100.
  • [13] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), no. 3, 209–215.
  • [14] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying curves in the Minkowski 3-space. Novi Sad J. Math. 33 (2003), no. 2, 23–32.
  • [15] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53–64.
  • [16] Ilarslan, K. and Nesovic, E., Some characterizations of rectifying curves in the Euclidean space E4. Turkish J. Math. 32 (2008), no. 1, 21–30.
  • [17] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26–35.
  • [18] Lucas, P. and Ortega-Yagues, J. A., Rectifying curves in the three-dimensional sphere. J. Math. Anal. Appl. 421 (2015), no. 2, 1855–1868.
  • [19] Ozbey, and Oral, M., A study on rectifying curves in the dual Lorentzian space. Bull. Korean Math. Soc. 46 (2009), no. 5, 967–978.
  • [20] Yilmaz, B., Gok, I. and Yayli, Y., Extended rectifying curves in Minkowski 3-space. Adv. Appl. Clifford Algebr. 26 (2016), no. 2, 861–872.
  • [21] Yücesan, A., Ayyildiz, N. and Coken, A. C., On rectifying dual space curves. Rev. Mat. Complut. 20 (2007), no. 2, 497–506.
Year 2016, , 1 - 8, 30.10.2016
https://doi.org/10.36890/iejg.584566

Abstract

References

  • [1] Cambie, S., Goemans, W. and Van den Bussche, I., Rectifying curves in the n-dimensional Euclidean space. Turkish J. Math. 40 (2016), no.1, 210–223.
  • [2] Chen, B.-Y., Geometry of Submanifolds. Marcel Dekker, New York, 1973.
  • [3] Chen, B.-Y., Constant-ratio hypersurfaces. Soochow J. Math. 21 (2001), 353–361.
  • [4] Chen, B.-Y., Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean space. J. Geom. 74 (2002), 61–77.
  • [5] Chen, B.-Y., Convolution of Riemannian manifolds and its applications. Bull. Austral. Math. Soc. 66 (2002), no. 2, 177–191.
  • [6] Chen, B.-Y., When does the position vector of a space curve always lie in its rectifying plane?. Amer. Math. Monthly 110 (2003), no. 2, 147–152.
  • [7] Chen, B.-Y., More on convolution of Riemannian manifolds. Beiträge Algebra Geom. 44 (2003), 9–24.
  • [8] Chen, B.-Y., Constant-ratio space-like submanifolds in pseudo-Euclidean space. Houston J. Math. 29 (2003), no. 2, 281–294
  • [9] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications. World Scientific, 2011.
  • [10] Chen, B.-Y., Topics in differential geometry associated with position vector fields on Euclidean submanifolds. Arab J. Math. Sci. 23 (2017), no. 1 (Special Issue on Geometry and Global Analysis), doi:10.1016/j.ajmsc.2016.08.001.
  • [11] Chen, B.-Y. and Dillen, F., Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77–90.
  • [12] Gungor, M. A. and Tosun, M., Some characterizations of quaternionic rectifying curves. Differ. Geom. Dyn. Syst. 13 (2011), 89–100.
  • [13] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), no. 3, 209–215.
  • [14] Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M., Some characterizations of rectifying curves in the Minkowski 3-space. Novi Sad J. Math. 33 (2003), no. 2, 23–32.
  • [15] Ilarslan, K. and Nesovic, E., On rectifying curves as centrodes and extremal curves in the Minkowski 3-space. Novi Sad J. Math. 37 (2007), no. 1, 53–64.
  • [16] Ilarslan, K. and Nesovic, E., Some characterizations of rectifying curves in the Euclidean space E4. Turkish J. Math. 32 (2008), no. 1, 21–30.
  • [17] Ilarslan, K. and Nesovic, E., Some relations between normal and rectifying curves in Minkowski space-time. Int. Electron. J. Geom. 7 (2014), no. 1, 26–35.
  • [18] Lucas, P. and Ortega-Yagues, J. A., Rectifying curves in the three-dimensional sphere. J. Math. Anal. Appl. 421 (2015), no. 2, 1855–1868.
  • [19] Ozbey, and Oral, M., A study on rectifying curves in the dual Lorentzian space. Bull. Korean Math. Soc. 46 (2009), no. 5, 967–978.
  • [20] Yilmaz, B., Gok, I. and Yayli, Y., Extended rectifying curves in Minkowski 3-space. Adv. Appl. Clifford Algebr. 26 (2016), no. 2, 861–872.
  • [21] Yücesan, A., Ayyildiz, N. and Coken, A. C., On rectifying dual space curves. Rev. Mat. Complut. 20 (2007), no. 2, 497–506.
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Bang-yen Chen

Publication Date October 30, 2016
Published in Issue Year 2016

Cite

APA Chen, B.-y. (2016). Differential Geometry of Rectifying Submanifolds. International Electronic Journal of Geometry, 9(2), 1-8. https://doi.org/10.36890/iejg.584566
AMA Chen By. Differential Geometry of Rectifying Submanifolds. Int. Electron. J. Geom. October 2016;9(2):1-8. doi:10.36890/iejg.584566
Chicago Chen, Bang-yen. “Differential Geometry of Rectifying Submanifolds”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 1-8. https://doi.org/10.36890/iejg.584566.
EndNote Chen B-y (October 1, 2016) Differential Geometry of Rectifying Submanifolds. International Electronic Journal of Geometry 9 2 1–8.
IEEE B.-y. Chen, “Differential Geometry of Rectifying Submanifolds”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 1–8, 2016, doi: 10.36890/iejg.584566.
ISNAD Chen, Bang-yen. “Differential Geometry of Rectifying Submanifolds”. International Electronic Journal of Geometry 9/2 (October 2016), 1-8. https://doi.org/10.36890/iejg.584566.
JAMA Chen B-y. Differential Geometry of Rectifying Submanifolds. Int. Electron. J. Geom. 2016;9:1–8.
MLA Chen, Bang-yen. “Differential Geometry of Rectifying Submanifolds”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 1-8, doi:10.36890/iejg.584566.
Vancouver Chen B-y. Differential Geometry of Rectifying Submanifolds. Int. Electron. J. Geom. 2016;9(2):1-8.

Cited By