Research Article
BibTex RIS Cite

SEMI-PARALLEL MERIDIAN SURFACES IN E^4

Year 2015, , 147 - 153, 30.10.2015
https://doi.org/10.36890/iejg.592301

Abstract


References

  • [1] Bulca, B. and Arslan, K., Semi-parallel Wintgen Ideal Surfaces in En. Compt. Rend. del Acad. Bulgare des Sci., 67(2014), 613-622.
  • [2] Bulca, B. and Arslan, K., Semi-parallel Tensor Product Surfaces in E4. Int. Elect. J. Geom., 7(2014), 36-43.
  • [3] Bulca, B., Arslan, K. and Milousheva, V., Meridian Surfaces in E4 with 1-type Gauss Map. Bull. Korean Math. Soc., 51(2014), 911-922.
  • [4] Chen,B. Y., Geometry of Submanifolds. Dekker, New York(1973).
  • [5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L, The semiring of immersions of manifolds. Beitrage Algebra Geom. 34(1993), 209–215.
  • [6] Deprez, J., Semi-parallel surfaces in Euclidean space. J. Geom. 25(1985), 192-200.
  • [7] Deszcz, R., On pseudosymmetric spaces. Bull. Soc. Math. Belg., 44 ser. A (1992), 1-34.
  • [8] Ferus, D., Symmetric submanifolds of Euclidean space. Math. Ann. 247(1980), 81-93.
  • [9] Ganchev, G. and Milousheva, V., Invariants and Bonnet-type theorem for surfaces in R4. Cent. Eur. J. Math. 8(2010), No.6, 993-1008.
  • [10] Ganchev, G. and Milousheva, V., Marginally trapped meridian surfaces of parabolic type in the four-dimensional Minkowski space. Int. J. Geom. Meth. in Modern Physics, 10:10(2013), 1-17.
  • [11] Ganchev, G. and Milousheva, V., Meridian Surfaces of Elliptic or Hyperbolic Type in the four dimensional Minkowski space. ArXiv: 1402.6112v1 (2014).
  • [12] Ganchev, G. and Milousheva, V., Special class of Meridian surfaces in the four dimensional Euclidean space. ArXiv: 1402.5848v1 (2014).
  • [13] Ganchev, G. and Milousheva, V., Geometric Interpretation of the Invariants of a Surface in R4 via the tangent indicatrix and the normal curvature ellipse. ArXiv:0905.4453v1(2009).
  • [14] Guadalupe, I.V., Rodriguez, L., Normal curvature of surfaces in space forms. Pacific J. Math. 106(1983), 95-103.
  • [15] Lumiste, Ü., Classification of two-codimensional semi-symmetric submanifolds. TRU¨ Toime- tised 803(1988), 79-84.
  • [16] Özgür, C., Arslan, K., Murathan, C., On a class of surfaces in Euclidean spaces. Commun. Fac. Sci. Univ. Ank. series A1 51(2002), 47-54.
  • [17] Öztürk, G., Bulca, B., Bayram, B.K. and Arslan, K., Meridian surfaces of Weingarten type in 4-dimensional Euclidean space E4. ArXiv:1305.3155v1 (2013).
  • ]18] Szabo, Z.I., Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local vesion , J. Differential Geometry 17(1982), 531-582.
Year 2015, , 147 - 153, 30.10.2015
https://doi.org/10.36890/iejg.592301

Abstract

References

  • [1] Bulca, B. and Arslan, K., Semi-parallel Wintgen Ideal Surfaces in En. Compt. Rend. del Acad. Bulgare des Sci., 67(2014), 613-622.
  • [2] Bulca, B. and Arslan, K., Semi-parallel Tensor Product Surfaces in E4. Int. Elect. J. Geom., 7(2014), 36-43.
  • [3] Bulca, B., Arslan, K. and Milousheva, V., Meridian Surfaces in E4 with 1-type Gauss Map. Bull. Korean Math. Soc., 51(2014), 911-922.
  • [4] Chen,B. Y., Geometry of Submanifolds. Dekker, New York(1973).
  • [5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L, The semiring of immersions of manifolds. Beitrage Algebra Geom. 34(1993), 209–215.
  • [6] Deprez, J., Semi-parallel surfaces in Euclidean space. J. Geom. 25(1985), 192-200.
  • [7] Deszcz, R., On pseudosymmetric spaces. Bull. Soc. Math. Belg., 44 ser. A (1992), 1-34.
  • [8] Ferus, D., Symmetric submanifolds of Euclidean space. Math. Ann. 247(1980), 81-93.
  • [9] Ganchev, G. and Milousheva, V., Invariants and Bonnet-type theorem for surfaces in R4. Cent. Eur. J. Math. 8(2010), No.6, 993-1008.
  • [10] Ganchev, G. and Milousheva, V., Marginally trapped meridian surfaces of parabolic type in the four-dimensional Minkowski space. Int. J. Geom. Meth. in Modern Physics, 10:10(2013), 1-17.
  • [11] Ganchev, G. and Milousheva, V., Meridian Surfaces of Elliptic or Hyperbolic Type in the four dimensional Minkowski space. ArXiv: 1402.6112v1 (2014).
  • [12] Ganchev, G. and Milousheva, V., Special class of Meridian surfaces in the four dimensional Euclidean space. ArXiv: 1402.5848v1 (2014).
  • [13] Ganchev, G. and Milousheva, V., Geometric Interpretation of the Invariants of a Surface in R4 via the tangent indicatrix and the normal curvature ellipse. ArXiv:0905.4453v1(2009).
  • [14] Guadalupe, I.V., Rodriguez, L., Normal curvature of surfaces in space forms. Pacific J. Math. 106(1983), 95-103.
  • [15] Lumiste, Ü., Classification of two-codimensional semi-symmetric submanifolds. TRU¨ Toime- tised 803(1988), 79-84.
  • [16] Özgür, C., Arslan, K., Murathan, C., On a class of surfaces in Euclidean spaces. Commun. Fac. Sci. Univ. Ank. series A1 51(2002), 47-54.
  • [17] Öztürk, G., Bulca, B., Bayram, B.K. and Arslan, K., Meridian surfaces of Weingarten type in 4-dimensional Euclidean space E4. ArXiv:1305.3155v1 (2013).
  • ]18] Szabo, Z.I., Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local vesion , J. Differential Geometry 17(1982), 531-582.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Betül Bulca

Kadri Arslan

Publication Date October 30, 2015
Published in Issue Year 2015

Cite

APA Bulca, B., & Arslan, K. (2015). SEMI-PARALLEL MERIDIAN SURFACES IN E^4. International Electronic Journal of Geometry, 8(2), 147-153. https://doi.org/10.36890/iejg.592301
AMA Bulca B, Arslan K. SEMI-PARALLEL MERIDIAN SURFACES IN E^4. Int. Electron. J. Geom. October 2015;8(2):147-153. doi:10.36890/iejg.592301
Chicago Bulca, Betül, and Kadri Arslan. “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 147-53. https://doi.org/10.36890/iejg.592301.
EndNote Bulca B, Arslan K (October 1, 2015) SEMI-PARALLEL MERIDIAN SURFACES IN E^4. International Electronic Journal of Geometry 8 2 147–153.
IEEE B. Bulca and K. Arslan, “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 147–153, 2015, doi: 10.36890/iejg.592301.
ISNAD Bulca, Betül - Arslan, Kadri. “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”. International Electronic Journal of Geometry 8/2 (October 2015), 147-153. https://doi.org/10.36890/iejg.592301.
JAMA Bulca B, Arslan K. SEMI-PARALLEL MERIDIAN SURFACES IN E^4. Int. Electron. J. Geom. 2015;8:147–153.
MLA Bulca, Betül and Kadri Arslan. “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 147-53, doi:10.36890/iejg.592301.
Vancouver Bulca B, Arslan K. SEMI-PARALLEL MERIDIAN SURFACES IN E^4. Int. Electron. J. Geom. 2015;8(2):147-53.