[1] Bulca, B. and Arslan, K., Semi-parallel Wintgen Ideal Surfaces in En. Compt. Rend. del Acad.
Bulgare des Sci., 67(2014), 613-622.
[2] Bulca, B. and Arslan, K., Semi-parallel Tensor Product Surfaces in E4. Int. Elect. J. Geom.,
7(2014), 36-43.
[3] Bulca, B., Arslan, K. and Milousheva, V., Meridian Surfaces in E4 with 1-type Gauss Map.
Bull. Korean Math. Soc., 51(2014), 911-922.
[4] Chen,B. Y., Geometry of Submanifolds. Dekker, New York(1973).
[5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L, The semiring of immersions of
manifolds. Beitrage Algebra Geom. 34(1993), 209–215.
[6] Deprez, J., Semi-parallel surfaces in Euclidean space. J. Geom. 25(1985), 192-200.
[7] Deszcz, R., On pseudosymmetric spaces. Bull. Soc. Math. Belg., 44 ser. A (1992), 1-34.
[8] Ferus, D., Symmetric submanifolds of Euclidean space. Math. Ann. 247(1980), 81-93.
[9] Ganchev, G. and Milousheva, V., Invariants and Bonnet-type theorem for surfaces in R4.
Cent. Eur. J. Math. 8(2010), No.6, 993-1008.
[10] Ganchev, G. and Milousheva, V., Marginally trapped meridian surfaces of parabolic type in the
four-dimensional Minkowski space. Int. J. Geom. Meth. in Modern Physics, 10:10(2013), 1-17.
[11] Ganchev, G. and Milousheva, V., Meridian Surfaces of Elliptic or Hyperbolic Type in the
four dimensional Minkowski space. ArXiv: 1402.6112v1 (2014).
[12] Ganchev, G. and Milousheva, V., Special class of Meridian surfaces in the four dimensional
Euclidean space. ArXiv: 1402.5848v1 (2014).
[13] Ganchev, G. and Milousheva, V., Geometric Interpretation of the Invariants of a Surface in
R4 via the tangent indicatrix and the normal curvature ellipse. ArXiv:0905.4453v1(2009).
[14] Guadalupe, I.V., Rodriguez, L., Normal curvature of surfaces in space forms. Pacific J. Math.
106(1983), 95-103.
[16] Özgür, C., Arslan, K., Murathan, C., On a class of surfaces in Euclidean spaces. Commun.
Fac. Sci. Univ. Ank. series A1 51(2002), 47-54.
[17] Öztürk, G., Bulca, B., Bayram, B.K. and Arslan, K., Meridian surfaces of Weingarten type in
4-dimensional Euclidean space E4. ArXiv:1305.3155v1 (2013).
]18] Szabo, Z.I., Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local vesion
, J. Differential Geometry 17(1982), 531-582.
[1] Bulca, B. and Arslan, K., Semi-parallel Wintgen Ideal Surfaces in En. Compt. Rend. del Acad.
Bulgare des Sci., 67(2014), 613-622.
[2] Bulca, B. and Arslan, K., Semi-parallel Tensor Product Surfaces in E4. Int. Elect. J. Geom.,
7(2014), 36-43.
[3] Bulca, B., Arslan, K. and Milousheva, V., Meridian Surfaces in E4 with 1-type Gauss Map.
Bull. Korean Math. Soc., 51(2014), 911-922.
[4] Chen,B. Y., Geometry of Submanifolds. Dekker, New York(1973).
[5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L, The semiring of immersions of
manifolds. Beitrage Algebra Geom. 34(1993), 209–215.
[6] Deprez, J., Semi-parallel surfaces in Euclidean space. J. Geom. 25(1985), 192-200.
[7] Deszcz, R., On pseudosymmetric spaces. Bull. Soc. Math. Belg., 44 ser. A (1992), 1-34.
[8] Ferus, D., Symmetric submanifolds of Euclidean space. Math. Ann. 247(1980), 81-93.
[9] Ganchev, G. and Milousheva, V., Invariants and Bonnet-type theorem for surfaces in R4.
Cent. Eur. J. Math. 8(2010), No.6, 993-1008.
[10] Ganchev, G. and Milousheva, V., Marginally trapped meridian surfaces of parabolic type in the
four-dimensional Minkowski space. Int. J. Geom. Meth. in Modern Physics, 10:10(2013), 1-17.
[11] Ganchev, G. and Milousheva, V., Meridian Surfaces of Elliptic or Hyperbolic Type in the
four dimensional Minkowski space. ArXiv: 1402.6112v1 (2014).
[12] Ganchev, G. and Milousheva, V., Special class of Meridian surfaces in the four dimensional
Euclidean space. ArXiv: 1402.5848v1 (2014).
[13] Ganchev, G. and Milousheva, V., Geometric Interpretation of the Invariants of a Surface in
R4 via the tangent indicatrix and the normal curvature ellipse. ArXiv:0905.4453v1(2009).
[14] Guadalupe, I.V., Rodriguez, L., Normal curvature of surfaces in space forms. Pacific J. Math.
106(1983), 95-103.
[16] Özgür, C., Arslan, K., Murathan, C., On a class of surfaces in Euclidean spaces. Commun.
Fac. Sci. Univ. Ank. series A1 51(2002), 47-54.
[17] Öztürk, G., Bulca, B., Bayram, B.K. and Arslan, K., Meridian surfaces of Weingarten type in
4-dimensional Euclidean space E4. ArXiv:1305.3155v1 (2013).
]18] Szabo, Z.I., Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local vesion
, J. Differential Geometry 17(1982), 531-582.
Bulca, B., & Arslan, K. (2015). SEMI-PARALLEL MERIDIAN SURFACES IN E^4. International Electronic Journal of Geometry, 8(2), 147-153. https://doi.org/10.36890/iejg.592301
AMA
Bulca B, Arslan K. SEMI-PARALLEL MERIDIAN SURFACES IN E^4. Int. Electron. J. Geom. October 2015;8(2):147-153. doi:10.36890/iejg.592301
Chicago
Bulca, Betül, and Kadri Arslan. “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 147-53. https://doi.org/10.36890/iejg.592301.
EndNote
Bulca B, Arslan K (October 1, 2015) SEMI-PARALLEL MERIDIAN SURFACES IN E^4. International Electronic Journal of Geometry 8 2 147–153.
IEEE
B. Bulca and K. Arslan, “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 147–153, 2015, doi: 10.36890/iejg.592301.
ISNAD
Bulca, Betül - Arslan, Kadri. “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”. International Electronic Journal of Geometry 8/2 (October 2015), 147-153. https://doi.org/10.36890/iejg.592301.
JAMA
Bulca B, Arslan K. SEMI-PARALLEL MERIDIAN SURFACES IN E^4. Int. Electron. J. Geom. 2015;8:147–153.
MLA
Bulca, Betül and Kadri Arslan. “SEMI-PARALLEL MERIDIAN SURFACES IN E^4”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 147-53, doi:10.36890/iejg.592301.
Vancouver
Bulca B, Arslan K. SEMI-PARALLEL MERIDIAN SURFACES IN E^4. Int. Electron. J. Geom. 2015;8(2):147-53.