Research Article
BibTex RIS Cite
Year 2020, , 107 - 115, 30.01.2020
https://doi.org/10.36890/iejg.699429

Abstract

References

  • [1] Paraskevopoulos, E., Natsiavas, S.: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory . International Journal of Solids and Structures. 50(1), 57–72 (2013).
  • [2] Müller, H.R.: Sphärische Kinematik. Berlin: Deutscher Verlag der Wissenschaften (1962).
  • [3] Karakılıç, I.: The Dual Rodrigues Parameters, International Journal of Engineering and Applied Sciences. 2(2), 23–32 (2010).
  • [4] Karakılıç, I.: Expression of Dual Euler Parameters Using the Dual Rodrigues Parameters and Their Application to the Screw Transformation. Mathematical and Computational Applications, 16(3), 680–689 (2011).
  • [5] Gallier, J.: Geometric Methods and Applications for Computer Science and Engineering. Springer-Verlag (2000).
  • [6] McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press (1990).
  • [7] Selig, J.M.: Cayley maps for SE(3). The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon (2007).
  • [8] Selig, J.M.: Centrodes and Lie Algebra. The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon (2007).
  • [9] Selig, J.M.: Geometric Fundamentals of Robotics. Ed:Gries D., Schneider T.R., Second Edition, Springer-Verlag, London (2005).
  • [10] Selig, J.M.: Introductory Robotics. Prentice-Hall International Ltd, UK (1992).
  • [11] Selig, J.M.: Lie Groups and Lie Algebras in Robotics. Lecture Notes. South Bank University London SE1 0AA, U.K., 101-125 (2006).
  • [12] Selig, J.M.: On the Geometry of Point-Plane Constraints on Rigid-Body Displacements. Acta Applicandae Mathematicae. 116(2), 133–155 (2011).
  • [13] Overfeli, M., Kumar, V., Harwin, W.S.: Methods for Kinematic Modeling of Biological and Robotic Systems. Medical Engineering and Physics 22, 509–520 (2000).
  • [14] Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Publishing, Amsterdam. Reprinted by Dover, New York (1990).
  • [15] Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994).
  • [16] Ebetiuc, S., Staab, H.: Applying Differential Geometry to Kinematic Modelling in Mobile Robotics. WSEAS Int. Conf. On Dynamical Systems and Control, Venice, Italy, 106–112 (2005).

Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group

Year 2020, , 107 - 115, 30.01.2020
https://doi.org/10.36890/iejg.699429

Abstract

In this work, the exponential and the Cayley maps, from the Lie algebra $\mathfrak{se(2)}$ of the planar motion group $SE(2)$, to the group itself are studied. The comparison between these maps on $SE(2)$ is given by using the Rodrigues vector. A three joint mechanism is discussed as an application.

References

  • [1] Paraskevopoulos, E., Natsiavas, S.: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory . International Journal of Solids and Structures. 50(1), 57–72 (2013).
  • [2] Müller, H.R.: Sphärische Kinematik. Berlin: Deutscher Verlag der Wissenschaften (1962).
  • [3] Karakılıç, I.: The Dual Rodrigues Parameters, International Journal of Engineering and Applied Sciences. 2(2), 23–32 (2010).
  • [4] Karakılıç, I.: Expression of Dual Euler Parameters Using the Dual Rodrigues Parameters and Their Application to the Screw Transformation. Mathematical and Computational Applications, 16(3), 680–689 (2011).
  • [5] Gallier, J.: Geometric Methods and Applications for Computer Science and Engineering. Springer-Verlag (2000).
  • [6] McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press (1990).
  • [7] Selig, J.M.: Cayley maps for SE(3). The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon (2007).
  • [8] Selig, J.M.: Centrodes and Lie Algebra. The International Federation of Theory of Machines and Mechanisms 12th World Congress, Besancon (2007).
  • [9] Selig, J.M.: Geometric Fundamentals of Robotics. Ed:Gries D., Schneider T.R., Second Edition, Springer-Verlag, London (2005).
  • [10] Selig, J.M.: Introductory Robotics. Prentice-Hall International Ltd, UK (1992).
  • [11] Selig, J.M.: Lie Groups and Lie Algebras in Robotics. Lecture Notes. South Bank University London SE1 0AA, U.K., 101-125 (2006).
  • [12] Selig, J.M.: On the Geometry of Point-Plane Constraints on Rigid-Body Displacements. Acta Applicandae Mathematicae. 116(2), 133–155 (2011).
  • [13] Overfeli, M., Kumar, V., Harwin, W.S.: Methods for Kinematic Modeling of Biological and Robotic Systems. Medical Engineering and Physics 22, 509–520 (2000).
  • [14] Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Publishing, Amsterdam. Reprinted by Dover, New York (1990).
  • [15] Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994).
  • [16] Ebetiuc, S., Staab, H.: Applying Differential Geometry to Kinematic Modelling in Mobile Robotics. WSEAS Int. Conf. On Dynamical Systems and Control, Venice, Italy, 106–112 (2005).
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

İlhan Karakılıç This is me

Soner Erkuş This is me

Publication Date January 30, 2020
Acceptance Date October 15, 2018
Published in Issue Year 2020

Cite

APA Karakılıç, İ., & Erkuş, S. (2020). Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group. International Electronic Journal of Geometry, 13(1), 107-115. https://doi.org/10.36890/iejg.699429
AMA Karakılıç İ, Erkuş S. Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group. Int. Electron. J. Geom. January 2020;13(1):107-115. doi:10.36890/iejg.699429
Chicago Karakılıç, İlhan, and Soner Erkuş. “Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group”. International Electronic Journal of Geometry 13, no. 1 (January 2020): 107-15. https://doi.org/10.36890/iejg.699429.
EndNote Karakılıç İ, Erkuş S (January 1, 2020) Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group. International Electronic Journal of Geometry 13 1 107–115.
IEEE İ. Karakılıç and S. Erkuş, “Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group”, Int. Electron. J. Geom., vol. 13, no. 1, pp. 107–115, 2020, doi: 10.36890/iejg.699429.
ISNAD Karakılıç, İlhan - Erkuş, Soner. “Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group”. International Electronic Journal of Geometry 13/1 (January 2020), 107-115. https://doi.org/10.36890/iejg.699429.
JAMA Karakılıç İ, Erkuş S. Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group. Int. Electron. J. Geom. 2020;13:107–115.
MLA Karakılıç, İlhan and Soner Erkuş. “Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group”. International Electronic Journal of Geometry, vol. 13, no. 1, 2020, pp. 107-15, doi:10.36890/iejg.699429.
Vancouver Karakılıç İ, Erkuş S. Kinematic Comparison of Exponential and Cayley Maps in the Planar Motion Group. Int. Electron. J. Geom. 2020;13(1):107-15.