Research Article
BibTex RIS Cite

Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential

Year 2021, , 157 - 166, 15.04.2021
https://doi.org/10.36890/iejg.713254

Abstract

In this note, we characterize the $f$-harmonic maps and bi-$f$-harmonic maps with potential. We prove that every bi-$f$-harmonic map with potential from complete Riemannian manifold, satisfying some conditions is a $f$-harmonic map with potential. More, we study the case of conformal maps between equidimensional manifolds.

Thanks

The author would like to thank the referee for his helpful suggestions and his valuable comments which helped to improve the manuscript.

References

  • [1] Lichnerowicz, A.: Applications harmoniques et variétés Kähleriennes. Rend. Sem. Mat. Fis. Milano. 39, 186–195 (1969).
  • [2] Cherif, A. M., Djaa, M.: On the bi-harmonic maps with potential. Arab J. Math. Sci. 24(1), 1–8 (2018).
  • [3] Ratto, A.: Harmonic maps with potential. Proceedings of theWorkshop on Differential Geometry and Topology (Palermo, 1996). Rend. Circ. Mat. Palermo. (2) Suppl. No. 49, 229–242 (1997).
  • [4] Zagane, A., Ouakass, S.: Some results and examples of the biharmonic maps with potential. Arab J. Math. Sci. 24(2), 182–198 (2018).
  • [5] Zegga, K., Cherif, A. M., Djaa, M.: On the f-biharmonic maps and submanifolds. Kyungpook Math. J. 55(1), 157–168 (2015).
  • [6] Ara, M. Geometry of F-harmonic maps. Kodai Math. J. 22(2), 243–263 (1999).
  • [7] Djaa, M., Cherif, A. M., Zegga, K., Ouakkas, S.: On the generalized of harmonic and bi-harmonic maps. Int. Electron. J. Geom. 5(1), 90–100 (2012).
  • [8] Cherif, A. M., Djaa, M., Zegga, K.: Stable f-harmonic maps on sphere. Commun. Korean Math. Soc. 30(4), 471–479 (2015).
  • [9] Course N.: f-harmonic maps, Thesis, University ofWarwick, Coventry, CV4 7AL, UK,2004.
  • [10] Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Research Notes in Mathematics, 87. Pitman (Advanced Publishing Program), Boston, MA, 1983.
  • [11] Chen, Q.: Harmonic maps with potential from complete manifolds. Chinese Sci. Bull. 43(21), 1780–1786 (1998).
  • [12] Jiang, R.: Harmonic maps with potential from R2 into S2. Asian J. Math. 20(4), 597–627 (2016).
  • [13] Ouakkas, S., Nasri, R., Djaa, M.: On the f-harmonic and f-biharmonic maps. JP J. Geom. Topol. 10(1), 11–27 (2010).
  • [14] Branding, V.: The heat flow for the full bosonic string. Ann. Global Anal. Geom. 50(4), 347–365 (2016).
Year 2021, , 157 - 166, 15.04.2021
https://doi.org/10.36890/iejg.713254

Abstract

In this note we characterize the f-harmonic maps and bi-f-harmonic maps with potential.We prove
that every bi-f-harmonic map with potential from complete Riemannian manifold, satisfying some
conditions is a f-harmonic map with potential.

References

  • [1] Lichnerowicz, A.: Applications harmoniques et variétés Kähleriennes. Rend. Sem. Mat. Fis. Milano. 39, 186–195 (1969).
  • [2] Cherif, A. M., Djaa, M.: On the bi-harmonic maps with potential. Arab J. Math. Sci. 24(1), 1–8 (2018).
  • [3] Ratto, A.: Harmonic maps with potential. Proceedings of theWorkshop on Differential Geometry and Topology (Palermo, 1996). Rend. Circ. Mat. Palermo. (2) Suppl. No. 49, 229–242 (1997).
  • [4] Zagane, A., Ouakass, S.: Some results and examples of the biharmonic maps with potential. Arab J. Math. Sci. 24(2), 182–198 (2018).
  • [5] Zegga, K., Cherif, A. M., Djaa, M.: On the f-biharmonic maps and submanifolds. Kyungpook Math. J. 55(1), 157–168 (2015).
  • [6] Ara, M. Geometry of F-harmonic maps. Kodai Math. J. 22(2), 243–263 (1999).
  • [7] Djaa, M., Cherif, A. M., Zegga, K., Ouakkas, S.: On the generalized of harmonic and bi-harmonic maps. Int. Electron. J. Geom. 5(1), 90–100 (2012).
  • [8] Cherif, A. M., Djaa, M., Zegga, K.: Stable f-harmonic maps on sphere. Commun. Korean Math. Soc. 30(4), 471–479 (2015).
  • [9] Course N.: f-harmonic maps, Thesis, University ofWarwick, Coventry, CV4 7AL, UK,2004.
  • [10] Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Research Notes in Mathematics, 87. Pitman (Advanced Publishing Program), Boston, MA, 1983.
  • [11] Chen, Q.: Harmonic maps with potential from complete manifolds. Chinese Sci. Bull. 43(21), 1780–1786 (1998).
  • [12] Jiang, R.: Harmonic maps with potential from R2 into S2. Asian J. Math. 20(4), 597–627 (2016).
  • [13] Ouakkas, S., Nasri, R., Djaa, M.: On the f-harmonic and f-biharmonic maps. JP J. Geom. Topol. 10(1), 11–27 (2010).
  • [14] Branding, V.: The heat flow for the full bosonic string. Ann. Global Anal. Geom. 50(4), 347–365 (2016).
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Zegga Kaddour 0000-0002-2888-2119

Publication Date April 15, 2021
Acceptance Date January 29, 2021
Published in Issue Year 2021

Cite

APA Kaddour, Z. (2021). Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. International Electronic Journal of Geometry, 14(1), 157-166. https://doi.org/10.36890/iejg.713254
AMA Kaddour Z. Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. Int. Electron. J. Geom. April 2021;14(1):157-166. doi:10.36890/iejg.713254
Chicago Kaddour, Zegga. “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps With Potential”. International Electronic Journal of Geometry 14, no. 1 (April 2021): 157-66. https://doi.org/10.36890/iejg.713254.
EndNote Kaddour Z (April 1, 2021) Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. International Electronic Journal of Geometry 14 1 157–166.
IEEE Z. Kaddour, “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential”, Int. Electron. J. Geom., vol. 14, no. 1, pp. 157–166, 2021, doi: 10.36890/iejg.713254.
ISNAD Kaddour, Zegga. “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps With Potential”. International Electronic Journal of Geometry 14/1 (April 2021), 157-166. https://doi.org/10.36890/iejg.713254.
JAMA Kaddour Z. Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. Int. Electron. J. Geom. 2021;14:157–166.
MLA Kaddour, Zegga. “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps With Potential”. International Electronic Journal of Geometry, vol. 14, no. 1, 2021, pp. 157-66, doi:10.36890/iejg.713254.
Vancouver Kaddour Z. Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. Int. Electron. J. Geom. 2021;14(1):157-66.