Araştırma Makalesi
BibTex RIS Kaynak Göster

Almost Ricci Solitons and Physical Applications

Yıl 2017, Cilt: 10 Sayı: 2, 1 - 10, 29.10.2017

Öz

In this paper, we establish a link between a “curvature inheritance symmetry" of a semi-Riemannian
manifold and a class of almost Ricci solitons(ARS). In support of this link we present three
mathematical models of conformally flat ARS-manifolds. As an application to relativity, by
investigating the kinematic and dynamic properties of ARS-spacetimes we present a physical
model of three classes (namely, shrinking, steady and expanding) of perfect fluid solutions
for ARS-spacetimes and prove the existence of a family of totally umbilical ARS Einstein
hypersurfaces of a GRW-spacetime. Finally, we propose two open problems for further study.

Kaynakça

  • [1] Adati, T. and Miyazawa, T., On Riemannian space with recurrent conformal curvature. Tensor (N. S.), 18 (1967), 348-354.
  • [2] Barros, A., Batista, R. and Ribeiro, E. Jr., Compact almost solitons with constant scalar curvature are gradient. Monatsh. Math., 174 Issue 1 (2014), 29-39.
  • [3] Alias L. J., Romero, A. and Sanchez, M ., Uniqueness of complete spacelike of constant mean curvature in generalized Robertson-Walker spacetime. Gen. Rel. Grav., 27 (1995), 71–84.
  • [4] Barros, A. and Riberiro, E. Jr., Some characterizations for compact almost Ricci solitons Proc. Amer. Math. Soc., 140 (2012), 1033-1040.
  • [5] Brozos-Vazquez, M., Garcia-Rio, E. and Gavino-Fernandez, S., Locally conformally flat Lorentzian gradient Ricci solitons. J. Geom. Anal.,23 (2013), 1196-1212.
  • [6] Chow, B. and Knopf, D., The Ricci flow: An Introduction. AMS, Providence, RI, USA, 2004.
  • [7] Cao, H. D. Chow, B. Chu, S. C. and Yau, S. T(Editors)., Collected papers on Ricci Flow. Series in Geometry and Topology, Volume 37, International Press, Somervilla, Mass, USA, 2003.
  • [8] Crasmareanu, M., Liouville and geodesic Ricci solitons. C. R. Acad. Sci. Paris, Ser., 347(2009), 1305-1308.
  • [9] Derdzinski, A., Compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Lecture Notes in Math., Vol. 838, Springer-Verlag, Berlin and New York, 1981.
  • [10] Duggal, K. L., Symmetry inheritance in Riemannian manifolds with applications. Acta. Appl. Math., 31 (1993), 225-247.
  • [11] Duggal, K. L., A new class of almost Ricci solitons and their physical interpretation. International Scholarly Research Notes, Volume 2016, Article ID 4903520, 6 pages.
  • [12] Duggal, K. L. and Sharma, R., Symmetries of Spacetimes and Riemannian Manifolds. Kluwer Academic Publishers, 487, 1999.
  • [13] Grycak, W., On affine collineations in conformally recurrent manifolds. Tensor N. S., 35 (1981), 45-50.
  • [14] Hall, G. S. and Da-Costa, J., Affine collineations in spacetimes. J. Math. Phys., 29 (1988), 2465-2472.
  • [15] Hamilton, R., Three-manifolds with positive Ricci curvature. J. Diff. Geom., 17(1982), 155-306.
  • [16] Katzin, G. H., Levine, J. and Davis, W. R., Curvature collineations. J. Math. Phys., 10 (1969), 617-621.
  • [17] Katzin, G. H., Levine, J. and Davis, W. R., Curvature collineations in conformally flat spaces, I. Tensor N.S., 21 (1970), 51-61.
  • [18] Levine, J and Katzin, G. H., Conformally flat spaces admitting special quadratic first integrals, 1. Symmetric spaces. Tensor N. S., 19 (1968), 317-328.
  • [19] Maartens, R. and Maharaj, S. D., Conformal Killing vectors in Robertson-Walker spacetimes. Class. Quant. Grav., 3 (1986), 1005-1011.
  • [20] Maartens, R., Mason, D. P. and Tsamparlis, M., Kinematic and dynamic properties of conformal Killing vector fields in anisotropic fluids. J. Math. Phys., 27 (1986), 2987-2994.
  • [21] Onda, K., Lorentz Ricci Solitons on 3-dimensional Lie groups, Geom. Dedicata, 147(2010), 313-322.
  • [22] Petrov, A. Z., Einstein spaces. Pergamon Press, Oxford, 1969.
  • [23] Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A., Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa CI. Sci., 5 X (2011), 757-799.
  • [24] Sharma, R., Almost Ricci solitons and K-contact geometry. Montash Math., DOI 10.1007/s00605–014-0657-8, (2014).
  • [25] Wang, Y., Gradient Ricci almost solitons on two classes of almost Kenmotsu manifolds. J. Korean Math. Soc., 53 N0. 5 (2016), 1101-1114.
  • [26] Witten, E., String theory and black holes. Phys. Rev. ,D(3) 44, no. 2 (1991), 314-324.
  • [27] Yano, K., Integral formulas in Riemannian geometry. Marcel Dekker, New York, 1970.
Yıl 2017, Cilt: 10 Sayı: 2, 1 - 10, 29.10.2017

Öz

Kaynakça

  • [1] Adati, T. and Miyazawa, T., On Riemannian space with recurrent conformal curvature. Tensor (N. S.), 18 (1967), 348-354.
  • [2] Barros, A., Batista, R. and Ribeiro, E. Jr., Compact almost solitons with constant scalar curvature are gradient. Monatsh. Math., 174 Issue 1 (2014), 29-39.
  • [3] Alias L. J., Romero, A. and Sanchez, M ., Uniqueness of complete spacelike of constant mean curvature in generalized Robertson-Walker spacetime. Gen. Rel. Grav., 27 (1995), 71–84.
  • [4] Barros, A. and Riberiro, E. Jr., Some characterizations for compact almost Ricci solitons Proc. Amer. Math. Soc., 140 (2012), 1033-1040.
  • [5] Brozos-Vazquez, M., Garcia-Rio, E. and Gavino-Fernandez, S., Locally conformally flat Lorentzian gradient Ricci solitons. J. Geom. Anal.,23 (2013), 1196-1212.
  • [6] Chow, B. and Knopf, D., The Ricci flow: An Introduction. AMS, Providence, RI, USA, 2004.
  • [7] Cao, H. D. Chow, B. Chu, S. C. and Yau, S. T(Editors)., Collected papers on Ricci Flow. Series in Geometry and Topology, Volume 37, International Press, Somervilla, Mass, USA, 2003.
  • [8] Crasmareanu, M., Liouville and geodesic Ricci solitons. C. R. Acad. Sci. Paris, Ser., 347(2009), 1305-1308.
  • [9] Derdzinski, A., Compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Lecture Notes in Math., Vol. 838, Springer-Verlag, Berlin and New York, 1981.
  • [10] Duggal, K. L., Symmetry inheritance in Riemannian manifolds with applications. Acta. Appl. Math., 31 (1993), 225-247.
  • [11] Duggal, K. L., A new class of almost Ricci solitons and their physical interpretation. International Scholarly Research Notes, Volume 2016, Article ID 4903520, 6 pages.
  • [12] Duggal, K. L. and Sharma, R., Symmetries of Spacetimes and Riemannian Manifolds. Kluwer Academic Publishers, 487, 1999.
  • [13] Grycak, W., On affine collineations in conformally recurrent manifolds. Tensor N. S., 35 (1981), 45-50.
  • [14] Hall, G. S. and Da-Costa, J., Affine collineations in spacetimes. J. Math. Phys., 29 (1988), 2465-2472.
  • [15] Hamilton, R., Three-manifolds with positive Ricci curvature. J. Diff. Geom., 17(1982), 155-306.
  • [16] Katzin, G. H., Levine, J. and Davis, W. R., Curvature collineations. J. Math. Phys., 10 (1969), 617-621.
  • [17] Katzin, G. H., Levine, J. and Davis, W. R., Curvature collineations in conformally flat spaces, I. Tensor N.S., 21 (1970), 51-61.
  • [18] Levine, J and Katzin, G. H., Conformally flat spaces admitting special quadratic first integrals, 1. Symmetric spaces. Tensor N. S., 19 (1968), 317-328.
  • [19] Maartens, R. and Maharaj, S. D., Conformal Killing vectors in Robertson-Walker spacetimes. Class. Quant. Grav., 3 (1986), 1005-1011.
  • [20] Maartens, R., Mason, D. P. and Tsamparlis, M., Kinematic and dynamic properties of conformal Killing vector fields in anisotropic fluids. J. Math. Phys., 27 (1986), 2987-2994.
  • [21] Onda, K., Lorentz Ricci Solitons on 3-dimensional Lie groups, Geom. Dedicata, 147(2010), 313-322.
  • [22] Petrov, A. Z., Einstein spaces. Pergamon Press, Oxford, 1969.
  • [23] Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A., Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa CI. Sci., 5 X (2011), 757-799.
  • [24] Sharma, R., Almost Ricci solitons and K-contact geometry. Montash Math., DOI 10.1007/s00605–014-0657-8, (2014).
  • [25] Wang, Y., Gradient Ricci almost solitons on two classes of almost Kenmotsu manifolds. J. Korean Math. Soc., 53 N0. 5 (2016), 1101-1114.
  • [26] Witten, E., String theory and black holes. Phys. Rev. ,D(3) 44, no. 2 (1991), 314-324.
  • [27] Yano, K., Integral formulas in Riemannian geometry. Marcel Dekker, New York, 1970.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Krishan Lal Duggal

Yayımlanma Tarihi 29 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 10 Sayı: 2

Kaynak Göster

APA Lal Duggal, K. (2017). Almost Ricci Solitons and Physical Applications. International Electronic Journal of Geometry, 10(2), 1-10.
AMA Lal Duggal K. Almost Ricci Solitons and Physical Applications. Int. Electron. J. Geom. Ekim 2017;10(2):1-10.
Chicago Lal Duggal, Krishan. “Almost Ricci Solitons and Physical Applications”. International Electronic Journal of Geometry 10, sy. 2 (Ekim 2017): 1-10.
EndNote Lal Duggal K (01 Ekim 2017) Almost Ricci Solitons and Physical Applications. International Electronic Journal of Geometry 10 2 1–10.
IEEE K. Lal Duggal, “Almost Ricci Solitons and Physical Applications”, Int. Electron. J. Geom., c. 10, sy. 2, ss. 1–10, 2017.
ISNAD Lal Duggal, Krishan. “Almost Ricci Solitons and Physical Applications”. International Electronic Journal of Geometry 10/2 (Ekim 2017), 1-10.
JAMA Lal Duggal K. Almost Ricci Solitons and Physical Applications. Int. Electron. J. Geom. 2017;10:1–10.
MLA Lal Duggal, Krishan. “Almost Ricci Solitons and Physical Applications”. International Electronic Journal of Geometry, c. 10, sy. 2, 2017, ss. 1-10.
Vancouver Lal Duggal K. Almost Ricci Solitons and Physical Applications. Int. Electron. J. Geom. 2017;10(2):1-10.