Araştırma Makalesi
BibTex RIS Kaynak Göster

Hyperbolic Pascal Simplex

Yıl 2017, Cilt: 10 Sayı: 2, 46 - 55, 29.10.2017

Öz

In this article we introduce a new geometric object called hyperbolic Pascal simplex. This new
object is presented by the regular hypercube mosaic in the 4-dimensional hyperbolic space. The
definition of the hyperbolic Pascal simplex, whose hyperfaces are hyperbolic Pascal pyramids and
whose faces are hyperbolic Pascals triangles, is a natural generalization of the definition of the
hyperbolic Pascal triangle and pyramid.We describe the growing of the hyperbolic Pascal simplex
considering the numbers and the values of the elements. Further figures illustrate the stepping
from a level to the next one.

Kaynakça

  • [1] Anatriello, G. and Vincenzi, G., Tribonacci-like sequences and generalized Pascal’s pyramids. Internat. J. Math. Ed. Sci. Tech., 45 (2014), 1220-1232.
  • [2] Belbachir, H., Németh, L. and Szalay, L., Hyperbolic Pascal triangles. Appl. Math. Comp., 273 (2016), 453-464.
  • [3] Belbachir, H. and Szalay, L., On the arithmetic triangles. ˘ Siauliai Math. Sem., 9 (2014), 15-26.
  • [4] Bondarenko, B. A., Generalized Pascal triangles and pyramids, their fractals, graphs, and applications. Translated from the Russian by Bollinger, R. C. (English) Santa Clara, CA: The Fibonacci Association, vii, 253 p. 1993. www.fq.math.ca/pascal.html
  • [5] Coxeter, H. S. M., Regular honeycombs in hyperbolic space. Proc. Int. Congress Math., Amsterdam, Vol. III. (1954), 155-169.
  • [6] Fiorenza, A. and Vincenzi, G., Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients. Chaos, Solitons & Fractals, 44 (2011), 147-152.
  • [7] Fiorenza, A. and Vincenzi, G., From Fibonacci Sequence to the Golden Ratio. Journal of Mathematics, (2013), Article ID 204674, 3 pages. [8] Harris, J, M., Hirst, J. L. and Mossinghoff, M. J., Combinatorics and Graph Theory. Springer, 2008.
  • [9] Németh, L. and Szalay, L., Alternating sums in hyperbolic Pascal triangles. Miskolc Mathematical Notes, 17 (2016), no. 2, 989-998.
  • [10] Németh, L. – Szalay, L., Recurrence sequences in the hyperbolic Pascal triangle corresponding to the regular mosaic f4; 5g. Annales Mathematicae et Informaticae, 46 (2016), 165–173.
  • [11] Németh, L. and Szalay, L., Power sums in hyperbolic Pascal triangles. Analele Univ. “Ovidius”, Math Series., (2018) (to appear).
  • [12] Németh, L., Fibonacci words in hyperbolic Pascal triangles. Acta Universitatis Sapientiae Mathematica, 9 (2017) no. 2, (to appear).
  • [13] Németh, L. On the hyperbolic Pascal pyramid. Beitr Algebra Geom., 57 (2016), 913–927.
  • [14] Németh, L., On the 4-dimensional hypercube mosaics. Publ. Math. Debrecen, 70 (2007), no. 3–4, 291–305.
  • [15] Németh, L., Pascal pyramid in space H2R. Mathematical Communications, 22 (2017), 211-225.
  • [16] Németh, L., The growing ration of hyperbolic regular mosaics with bounded cell, Armenian Journal of Mathematics, 9 (2017), 1-19.
  • [17] Siani, S. and Vincenzi, G., Fibonacci-like sequences and generalized Pascal’s triangles. Internat. J. Math. Ed. Sci. Tech., 45 (2014), 609-614.
Yıl 2017, Cilt: 10 Sayı: 2, 46 - 55, 29.10.2017

Öz

Kaynakça

  • [1] Anatriello, G. and Vincenzi, G., Tribonacci-like sequences and generalized Pascal’s pyramids. Internat. J. Math. Ed. Sci. Tech., 45 (2014), 1220-1232.
  • [2] Belbachir, H., Németh, L. and Szalay, L., Hyperbolic Pascal triangles. Appl. Math. Comp., 273 (2016), 453-464.
  • [3] Belbachir, H. and Szalay, L., On the arithmetic triangles. ˘ Siauliai Math. Sem., 9 (2014), 15-26.
  • [4] Bondarenko, B. A., Generalized Pascal triangles and pyramids, their fractals, graphs, and applications. Translated from the Russian by Bollinger, R. C. (English) Santa Clara, CA: The Fibonacci Association, vii, 253 p. 1993. www.fq.math.ca/pascal.html
  • [5] Coxeter, H. S. M., Regular honeycombs in hyperbolic space. Proc. Int. Congress Math., Amsterdam, Vol. III. (1954), 155-169.
  • [6] Fiorenza, A. and Vincenzi, G., Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients. Chaos, Solitons & Fractals, 44 (2011), 147-152.
  • [7] Fiorenza, A. and Vincenzi, G., From Fibonacci Sequence to the Golden Ratio. Journal of Mathematics, (2013), Article ID 204674, 3 pages. [8] Harris, J, M., Hirst, J. L. and Mossinghoff, M. J., Combinatorics and Graph Theory. Springer, 2008.
  • [9] Németh, L. and Szalay, L., Alternating sums in hyperbolic Pascal triangles. Miskolc Mathematical Notes, 17 (2016), no. 2, 989-998.
  • [10] Németh, L. – Szalay, L., Recurrence sequences in the hyperbolic Pascal triangle corresponding to the regular mosaic f4; 5g. Annales Mathematicae et Informaticae, 46 (2016), 165–173.
  • [11] Németh, L. and Szalay, L., Power sums in hyperbolic Pascal triangles. Analele Univ. “Ovidius”, Math Series., (2018) (to appear).
  • [12] Németh, L., Fibonacci words in hyperbolic Pascal triangles. Acta Universitatis Sapientiae Mathematica, 9 (2017) no. 2, (to appear).
  • [13] Németh, L. On the hyperbolic Pascal pyramid. Beitr Algebra Geom., 57 (2016), 913–927.
  • [14] Németh, L., On the 4-dimensional hypercube mosaics. Publ. Math. Debrecen, 70 (2007), no. 3–4, 291–305.
  • [15] Németh, L., Pascal pyramid in space H2R. Mathematical Communications, 22 (2017), 211-225.
  • [16] Németh, L., The growing ration of hyperbolic regular mosaics with bounded cell, Armenian Journal of Mathematics, 9 (2017), 1-19.
  • [17] Siani, S. and Vincenzi, G., Fibonacci-like sequences and generalized Pascal’s triangles. Internat. J. Math. Ed. Sci. Tech., 45 (2014), 609-614.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

László Németh Bu kişi benim

Yayımlanma Tarihi 29 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 10 Sayı: 2

Kaynak Göster

APA Németh, L. (2017). Hyperbolic Pascal Simplex. International Electronic Journal of Geometry, 10(2), 46-55.
AMA Németh L. Hyperbolic Pascal Simplex. Int. Electron. J. Geom. Ekim 2017;10(2):46-55.
Chicago Németh, László. “Hyperbolic Pascal Simplex”. International Electronic Journal of Geometry 10, sy. 2 (Ekim 2017): 46-55.
EndNote Németh L (01 Ekim 2017) Hyperbolic Pascal Simplex. International Electronic Journal of Geometry 10 2 46–55.
IEEE L. Németh, “Hyperbolic Pascal Simplex”, Int. Electron. J. Geom., c. 10, sy. 2, ss. 46–55, 2017.
ISNAD Németh, László. “Hyperbolic Pascal Simplex”. International Electronic Journal of Geometry 10/2 (Ekim 2017), 46-55.
JAMA Németh L. Hyperbolic Pascal Simplex. Int. Electron. J. Geom. 2017;10:46–55.
MLA Németh, László. “Hyperbolic Pascal Simplex”. International Electronic Journal of Geometry, c. 10, sy. 2, 2017, ss. 46-55.
Vancouver Németh L. Hyperbolic Pascal Simplex. Int. Electron. J. Geom. 2017;10(2):46-55.