[1] Belova N.E. Bundles of 4th dimensional algebras. Kazan: Kazan University, 1999. 44 p. Dep. in VINITI 11.10.99, No. 3037-B99.
[2] Kotelnikov A.P. Screw calculus and some applications of it to geometry and mechanics. Kazan, 1895.
[3] Kuzmina I.A., Shapukov B.N. Conformal and elliptic models of the Hopf fibration. Tr. geom. sem. Kazan: Kazan University, 2003. Issue
24. 81-98.
[4] Kuzmina I.A., Mikeš J. On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of
them. Annales Mathematicae et Informaticae, 2013. 42. 57-64.
[5] Mikeš J. et al., Differential geometry of special mappings, Palacky Univ. Press, Olomouc, 2015.
[6] Rozenfeld B.A. Higher-dimensional spaces. Moscow: Nauka, 1966. 647 p.
[7] Shapukov B.N. Connections on a differential fibred bundle. Tr. geom. sem. Kazan: Kazan University, 1980. Issue 12. 97-109.
[8] Shirokov A.P. Geometry of tangent bundles and spaces over algebras. The results of science and technology. Ser. Probl. geom., VINITI,
M., 1981. 12. 6195.
[1] Belova N.E. Bundles of 4th dimensional algebras. Kazan: Kazan University, 1999. 44 p. Dep. in VINITI 11.10.99, No. 3037-B99.
[2] Kotelnikov A.P. Screw calculus and some applications of it to geometry and mechanics. Kazan, 1895.
[3] Kuzmina I.A., Shapukov B.N. Conformal and elliptic models of the Hopf fibration. Tr. geom. sem. Kazan: Kazan University, 2003. Issue
24. 81-98.
[4] Kuzmina I.A., Mikeš J. On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of
them. Annales Mathematicae et Informaticae, 2013. 42. 57-64.
[5] Mikeš J. et al., Differential geometry of special mappings, Palacky Univ. Press, Olomouc, 2015.
[6] Rozenfeld B.A. Higher-dimensional spaces. Moscow: Nauka, 1966. 647 p.
[7] Shapukov B.N. Connections on a differential fibred bundle. Tr. geom. sem. Kazan: Kazan University, 1980. Issue 12. 97-109.
[8] Shirokov A.P. Geometry of tangent bundles and spaces over algebras. The results of science and technology. Ser. Probl. geom., VINITI,
M., 1981. 12. 6195.
Kuzmina, İ., & Peška, P. (2018). On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space. International Electronic Journal of Geometry, 11(2), 104-110. https://doi.org/10.36890/iejg.545137
AMA
Kuzmina İ, Peška P. On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space. Int. Electron. J. Geom. Kasım 2018;11(2):104-110. doi:10.36890/iejg.545137
Chicago
Kuzmina, İrina, ve Patrik Peška. “On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space”. International Electronic Journal of Geometry 11, sy. 2 (Kasım 2018): 104-10. https://doi.org/10.36890/iejg.545137.
EndNote
Kuzmina İ, Peška P (01 Kasım 2018) On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space. International Electronic Journal of Geometry 11 2 104–110.
IEEE
İ. Kuzmina ve P. Peška, “On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space”, Int. Electron. J. Geom., c. 11, sy. 2, ss. 104–110, 2018, doi: 10.36890/iejg.545137.
ISNAD
Kuzmina, İrina - Peška, Patrik. “On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space”. International Electronic Journal of Geometry 11/2 (Kasım 2018), 104-110. https://doi.org/10.36890/iejg.545137.
JAMA
Kuzmina İ, Peška P. On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space. Int. Electron. J. Geom. 2018;11:104–110.
MLA
Kuzmina, İrina ve Patrik Peška. “On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space”. International Electronic Journal of Geometry, c. 11, sy. 2, 2018, ss. 104-10, doi:10.36890/iejg.545137.
Vancouver
Kuzmina İ, Peška P. On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space. Int. Electron. J. Geom. 2018;11(2):104-10.