[1] Alias, L. J., Ferrandez, A., Lucas, P. and Merono, M. A., On the Gauss map of B-scroll,
Tsukuba J. Math. 22 (1998), 371-377.
[2] Arroyo, J., Barros, M. and Garay, O. J., A characterization of helices and Cornu spirals in
real space forms, Bull. Austral. Math. Soc. 56 (1997), 37-49.
[3] Balgetir, H., Bektas, M. Ergüt, M., On a characterization of null helices, Bull. Inst. Math.
Acad. Sinica 29 (2001), 71-78.
[4] Balgetir, H., Bektas, M. and Inoguchi, J., Null Bertrand curves and their characterizations,
Note Mat. 23 (2004), no. 1, 7-13.
[5] Barros, M., General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997),
1503-1509.
[6] Bektas, M., Balgetir, H. and Ergut, M., Inclined curves of null curves in the 3-dimensional
Lorentzian manifold and their characterization, J. Inst. Math. Comput. Sci. Math. Ser. 12
(1999), 117-120.
[7] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor (N. S.) 20 (1969), 229-242.
[8] Calini, A. and Ivey, T., Backlund transformations and knots of constant torsion, J. Knot
Theory Ramifications 7 (1988), no. 6, 719-746.
[9] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane ?,
Amer. Math. Monthly 110 (2003), No. 2, 147-152.
[10] Cho, J. T., Inoguchi, J. and Lee, J. E., Slant curves in Sasakian space forms, Bull. Austral.
Math. Soc. 74 (2006), no. 3, 359-367.
[11] Cho, J. T., Inoguchi, J. and Lee, J. E., Biharmonic curves in 3-dimensional Sasakian space
forms, Ann. Mat. pura Appl., 186 (2007), 685-701.
[12] Cho, J. T. and Lee, J. E., Slant curves in a contact pseudo-Hermitian 3-manifold, preprint,
2006.
[13] Choi, S. M., On the Gauss map of ruled surfaces in a Minkowski 3-space, Tsukuba J. Math.
19 (1995) 285-304.
[14] Choi, S. M., Ki, U.H. and Suh, Y. J., On the Gauss map of null scrolls, Tsukuba J. Math.
22 (1998) 272-279 .
[15] Dajczer, M. and Nomizu, K., On flat surfaces in S31 and H31 , in: Manifolds and Lie Groups{
papers in honor of Yozo Matsushima (J. Hano et al eds.), Progress in Math. 14 (1981),
Birkhauser, Boston, pp. 71-108.
[16] Dillen, F. and Künel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta
Math. 98 (1999), 307-320.
[17] Dillen, F., Van de Woestyne, I., Verstraelen, L. and Walrave, J., Ruled surfaces of finite type
in 3-dimensional Minkowski space, Results Math. 27 (1995), 250-255.
[18] Dorfmeister, J., Inoguchi, J. and Toda, M.,Weierstra¼-type representation of timelike surfaces
with constant mean curvature, Contem. Math. 308 (2002), Amer. Math. Soc., pp. 77-99.
[19] Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of semi-Riemannian Manifolds and
Applications, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht,
1996.
[20] Eisenhart, L. P., A Treatise on the Di®erential Geometry of Curves and Surfaces, Ginn and
Company, 1909. Reprinted as a Dover Phoenix Editions, 2004.
[21] Ferrandez, A., Riemannian versus Lorentzian submanifolds, some open problems, in: Proc.
Workshop on Recent Topics in Di®erential Geometry, Santiago de Compostera, Depto. Geom.
y Topologia, Univ. Santiago de Compostera, 89 (1998), 109-130.
[22] Ferrandez, A., Gimenez, A. and Lucas, P., Null helices in Lorentzian space forms, Internat.
J. Modern Phys. A 16 (2001), 4845-4863.
[23] Ferrandez, A., Gimenez, A. and Lucas, P., Null generalized helices in Lorentz-Minkowski
spaces, J. Phys. A: Math. Gen. 35 (2002), no. 39, 8243-8251.
[24] Ferrandez, A., Gimenez, A. and Lucas, P., Geometry of lightlike submanifolds in Lorentzian
space forms, in: Proc. del Congreso Geometria de Lorentz. Benalmadena 2001, Publ. RSME
(2003). (http://www.um.es/docencia/plucas/)
[25] Ferrandez, A. and Lucas, P. On the Gauss map of B-scrolls in 3-dimensional Lorentzian space
forms, Czechoslovak Math. J. 50 (125) (2000), 699-704.
[26] Fujioka, A. and Inoguchi, J., Timelike Bonnet surfaces in Lorentzian space forms, Di®er.
Geom. Appl. 18 (2003) 103-111.
[27] Fujioka, A. and Inoguchi, J., Timelike surfaces with harmonic inverse mean curvature, in:
Surveys on Differential Geometry and Integrable Systems, Advanced Studies in Pure Math.,
Math. Soc. Japan, to appear.
[28] Grant, J. D. E. and Musso, E., Coisotropic variational problems, J. Geom. Phys. 50 (2004),
303-338.
[29] Graves, L. K., Codimension one isometric immersions between Lorentz spaces, Trans. Amer.
Math. Soc. 252 (1979), 367-392.
[30] Guggenheimer, H. W., Differential Geometry, General Publishing Company, 1963, Dover
Edition, 1977.
[31] Hartman, P. and Nirenberg, L., On spherical image maps whose Jacobian do not change sign,
Amer. J. Math. 81 (1959), 901-920.
[32] Honda, K. and Inoguchi, J., Deformation of Cartan framed null curves preserving the torsion,
Differ. Geom. Dyn. Syst. 5 (2003), 31-37.
(http://vectron.mathem.pub.ro/dgds/v5n1/d51.htm)
[33] Honda, K. and Inoguchi, J., Cesµaro's method for Cartan framed null curves, preprint.
[34] Hong, J. Q., Timelike surfaces with mean curvature one in anti de Sitter 3-space, Kodai
Math. J. 17 (1994), 341-350.
[35] Ikawa, T., On curves and submanifolds in an indefinite Riemannian manifold, Tsukuba J.
Math. 9 (1985), 353-371.
[36] Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J.
Math. 21 (1998), 141-152.
[37] Inoguchi, J. and Lee, S., Lightlike surfaces in Minkowski 3-space, preprint.
[38] Inoguchi, J. and Toda, M., Timelike minimal surfaces via loop groups, Acta Appl. Math. 63
(2004), 313-355.
[39] S. Izumiya and A. Takiyama, A time-like surface in Minkowski 3-space which contain light-like
lines, J. Geom. 64 (1999), 95-101.
[40] Kim, D. S. and Kim, Y. H., B-scrolls with nondiagonalizable shape operators, Rocky Moun-
tain J. Math. 33 (2003), 175-190.
[41] Kim, Y. H. and Yoon, D. W., Ruled surfaces with pointwise 1-type Gauss map, J. Geom.
Phys. 34 (2000), 191-205.
[42] Kim, Y. H. and Yoon, D. W., Classi¯cation of ruled surfaces in Minkowski 3-space, J. Geom.
Phys., 49 (2004), 89-100.
[43] Kobayashi, O, Maximal surfaces in the three-dimensional Minkowski space L3, Tokyo J.
Math. 6 (1983), 297-309.
[44] Lancret, M. A., Memoire sur les courbes µa double courbure, Memoires presentes µa l'Institut
1 (1806), 416-454.
[45] Lee, S., Timelike surfaces of constant mean curvature §1 in anti-de Sitter 3-space H31
(¡1),Ann. Global. Anal. Geom. 29 (2006), no. 4, 355-401.
[46] Magid, M. A., Timelike surfaces in Lorentz 3-space with prescribed mean curvature and
Gauss map, Hokkaido Math. J. 20 (1991), 447-464.
[47] Massey,W. S., Surfaces of Gaussian curvature zero in Euclidean 3-space, Tohoku Math. J. 14
(1962), 73-79.
[48] McNertney,L. V., One-parameter families of surfaces with constant curvature in Lorentz 3-
space, Ph. D. Thesis, Brown Univ., 1980.
[49] Milnor, T. K., Harmonic maps and classical surface theory in Minkowski 3-space, Trans.
Amer. Math. Soc. 280 (1983), 161-185.
[50] Mira, P. and Pastor, J. A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh.
Math. 140 (2003), 315-334.
[51] Musso, E. and Nicolodi, L., Closed trajectories of a particle model on null curves in anti-de
Sitter 3-space, Classical Quantum Gravity 24 (2007), 5401-5411.
[52] Musso, E. and Nicolodi, L., Reduction for constrained variational problems on 3D null curves,
preprint, math.DG. 0710.0483.
[53] Nomizu, K. and Sasaki, T., A±ne Dfferential Geometry. Geometry of A±ne Immersions,
Cambridge Tracts in Math. 111, Cambridge Univ. Press, 1994.
[54] Nutbourne, A. W. and Martin, R. R., Differential Geometry Applied to the Design of Curves
and Surfaces, Ellis Horwood, Chichester, UK, 1988.
[56] O'Neill, B., Semi-Riemannian Geometry with Application to Relativity, Academic Press,
1983.
[57] Otsuki, T., Differential Geometry (in Japanese), Asakura, 1961.
[58] Nassar, H. A.A. and Fathi, M. H., On an extension of the B-scroll surface in Lorentz 3-space R31
, Riv. Mat. Univ. Parma (6) 3 (2000), 57-67 (2001).
[59] Petrovic-Torga¸sev, M. and ¸Sucurovic, E., Some characterizations of the Lorentzian spherical
timelike and null curves, Math. Vesnik 53 (2001), 21-27.
(http://www.emis.de/journals/MV/0112/3.html )
[60] Pogolerov, A. W., Continuous maps of a bounded variations, Dokl. Acad. Nauk SSSR 111
1956 757-759.
[61] Pogolerov, A. W., An extension of Gauss' theorem on the spherical representation of surfaces
of bounded exterior curvature, Dokl. Acad. Nauk SSSR 111 1956 945-947.
[62] Sahin, B., Kilic, E. and Güneş, R., Null helices in R31, Differ. Geom. Dyn. Syst. 3 (2001),
31-36. (http://vectron.mathem.pub.ro/dgds/v3n2/v3n2.htm)
[63] Schief, W. K., On the integrability of Bertrand curves and Razzaboni surfaces, J. Geom.
Phys. 45 (2003), 130-150.
[64] Scofield, P. D., Curves of constant precession, Amer. Math. Monthly 102 (1995), No. 6,
531-537.
[65] Spivak, M., A Comprehensive Introduction to Di®erential Geometry, Second Edition, Vol. 4,
Publish or Perish, Wilmington, DE, 1979.
[66] Struik, D. J., Lectures on Classical Di®erential Geometry, Addison-Wesley Press Inc., Cam-
bridge, Mass., 1950, Reprint of the second edition, Dover, New York, 1988.
[67] Van de Woestijne, I., Minimal surfaces of the 3-dimensional Minkowski space, in: Geometry
and Topology of Submanifolds II (M. Boyom et al eds.), World Scienti¯c Publ., Teaneck, NJ,
1990, pp. 344-369.
[68] Weinstein, T., An Introduction to Lorentz Surfaces, de Gruyter Exposition in Math. vol. 22,
Walter de Gruyter, Berlin.
[69] Wong, Y. C., A global formulation of the condition for a curve to be lie in a sphere, Monatsch.
Math. 67 (1963), 363-365.
[70] Wong, Y. C., On an explicit characterization of spherical curves, Proc. Amer. Math. Soc. 34
(1972), 239{242. Erratum: 38(1973), 668.
Null curves in Minkowski 3-space
Year 2008,
Volume: 1 Issue: 2, 40 - 83, 30.11.2008
[1] Alias, L. J., Ferrandez, A., Lucas, P. and Merono, M. A., On the Gauss map of B-scroll,
Tsukuba J. Math. 22 (1998), 371-377.
[2] Arroyo, J., Barros, M. and Garay, O. J., A characterization of helices and Cornu spirals in
real space forms, Bull. Austral. Math. Soc. 56 (1997), 37-49.
[3] Balgetir, H., Bektas, M. Ergüt, M., On a characterization of null helices, Bull. Inst. Math.
Acad. Sinica 29 (2001), 71-78.
[4] Balgetir, H., Bektas, M. and Inoguchi, J., Null Bertrand curves and their characterizations,
Note Mat. 23 (2004), no. 1, 7-13.
[5] Barros, M., General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997),
1503-1509.
[6] Bektas, M., Balgetir, H. and Ergut, M., Inclined curves of null curves in the 3-dimensional
Lorentzian manifold and their characterization, J. Inst. Math. Comput. Sci. Math. Ser. 12
(1999), 117-120.
[7] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor (N. S.) 20 (1969), 229-242.
[8] Calini, A. and Ivey, T., Backlund transformations and knots of constant torsion, J. Knot
Theory Ramifications 7 (1988), no. 6, 719-746.
[9] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane ?,
Amer. Math. Monthly 110 (2003), No. 2, 147-152.
[10] Cho, J. T., Inoguchi, J. and Lee, J. E., Slant curves in Sasakian space forms, Bull. Austral.
Math. Soc. 74 (2006), no. 3, 359-367.
[11] Cho, J. T., Inoguchi, J. and Lee, J. E., Biharmonic curves in 3-dimensional Sasakian space
forms, Ann. Mat. pura Appl., 186 (2007), 685-701.
[12] Cho, J. T. and Lee, J. E., Slant curves in a contact pseudo-Hermitian 3-manifold, preprint,
2006.
[13] Choi, S. M., On the Gauss map of ruled surfaces in a Minkowski 3-space, Tsukuba J. Math.
19 (1995) 285-304.
[14] Choi, S. M., Ki, U.H. and Suh, Y. J., On the Gauss map of null scrolls, Tsukuba J. Math.
22 (1998) 272-279 .
[15] Dajczer, M. and Nomizu, K., On flat surfaces in S31 and H31 , in: Manifolds and Lie Groups{
papers in honor of Yozo Matsushima (J. Hano et al eds.), Progress in Math. 14 (1981),
Birkhauser, Boston, pp. 71-108.
[16] Dillen, F. and Künel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta
Math. 98 (1999), 307-320.
[17] Dillen, F., Van de Woestyne, I., Verstraelen, L. and Walrave, J., Ruled surfaces of finite type
in 3-dimensional Minkowski space, Results Math. 27 (1995), 250-255.
[18] Dorfmeister, J., Inoguchi, J. and Toda, M.,Weierstra¼-type representation of timelike surfaces
with constant mean curvature, Contem. Math. 308 (2002), Amer. Math. Soc., pp. 77-99.
[19] Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of semi-Riemannian Manifolds and
Applications, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht,
1996.
[20] Eisenhart, L. P., A Treatise on the Di®erential Geometry of Curves and Surfaces, Ginn and
Company, 1909. Reprinted as a Dover Phoenix Editions, 2004.
[21] Ferrandez, A., Riemannian versus Lorentzian submanifolds, some open problems, in: Proc.
Workshop on Recent Topics in Di®erential Geometry, Santiago de Compostera, Depto. Geom.
y Topologia, Univ. Santiago de Compostera, 89 (1998), 109-130.
[22] Ferrandez, A., Gimenez, A. and Lucas, P., Null helices in Lorentzian space forms, Internat.
J. Modern Phys. A 16 (2001), 4845-4863.
[23] Ferrandez, A., Gimenez, A. and Lucas, P., Null generalized helices in Lorentz-Minkowski
spaces, J. Phys. A: Math. Gen. 35 (2002), no. 39, 8243-8251.
[24] Ferrandez, A., Gimenez, A. and Lucas, P., Geometry of lightlike submanifolds in Lorentzian
space forms, in: Proc. del Congreso Geometria de Lorentz. Benalmadena 2001, Publ. RSME
(2003). (http://www.um.es/docencia/plucas/)
[25] Ferrandez, A. and Lucas, P. On the Gauss map of B-scrolls in 3-dimensional Lorentzian space
forms, Czechoslovak Math. J. 50 (125) (2000), 699-704.
[26] Fujioka, A. and Inoguchi, J., Timelike Bonnet surfaces in Lorentzian space forms, Di®er.
Geom. Appl. 18 (2003) 103-111.
[27] Fujioka, A. and Inoguchi, J., Timelike surfaces with harmonic inverse mean curvature, in:
Surveys on Differential Geometry and Integrable Systems, Advanced Studies in Pure Math.,
Math. Soc. Japan, to appear.
[28] Grant, J. D. E. and Musso, E., Coisotropic variational problems, J. Geom. Phys. 50 (2004),
303-338.
[29] Graves, L. K., Codimension one isometric immersions between Lorentz spaces, Trans. Amer.
Math. Soc. 252 (1979), 367-392.
[30] Guggenheimer, H. W., Differential Geometry, General Publishing Company, 1963, Dover
Edition, 1977.
[31] Hartman, P. and Nirenberg, L., On spherical image maps whose Jacobian do not change sign,
Amer. J. Math. 81 (1959), 901-920.
[32] Honda, K. and Inoguchi, J., Deformation of Cartan framed null curves preserving the torsion,
Differ. Geom. Dyn. Syst. 5 (2003), 31-37.
(http://vectron.mathem.pub.ro/dgds/v5n1/d51.htm)
[33] Honda, K. and Inoguchi, J., Cesµaro's method for Cartan framed null curves, preprint.
[34] Hong, J. Q., Timelike surfaces with mean curvature one in anti de Sitter 3-space, Kodai
Math. J. 17 (1994), 341-350.
[35] Ikawa, T., On curves and submanifolds in an indefinite Riemannian manifold, Tsukuba J.
Math. 9 (1985), 353-371.
[36] Inoguchi, J., Timelike surfaces of constant mean curvature in Minkowski 3-space, Tokyo J.
Math. 21 (1998), 141-152.
[37] Inoguchi, J. and Lee, S., Lightlike surfaces in Minkowski 3-space, preprint.
[38] Inoguchi, J. and Toda, M., Timelike minimal surfaces via loop groups, Acta Appl. Math. 63
(2004), 313-355.
[39] S. Izumiya and A. Takiyama, A time-like surface in Minkowski 3-space which contain light-like
lines, J. Geom. 64 (1999), 95-101.
[40] Kim, D. S. and Kim, Y. H., B-scrolls with nondiagonalizable shape operators, Rocky Moun-
tain J. Math. 33 (2003), 175-190.
[41] Kim, Y. H. and Yoon, D. W., Ruled surfaces with pointwise 1-type Gauss map, J. Geom.
Phys. 34 (2000), 191-205.
[42] Kim, Y. H. and Yoon, D. W., Classi¯cation of ruled surfaces in Minkowski 3-space, J. Geom.
Phys., 49 (2004), 89-100.
[43] Kobayashi, O, Maximal surfaces in the three-dimensional Minkowski space L3, Tokyo J.
Math. 6 (1983), 297-309.
[44] Lancret, M. A., Memoire sur les courbes µa double courbure, Memoires presentes µa l'Institut
1 (1806), 416-454.
[45] Lee, S., Timelike surfaces of constant mean curvature §1 in anti-de Sitter 3-space H31
(¡1),Ann. Global. Anal. Geom. 29 (2006), no. 4, 355-401.
[46] Magid, M. A., Timelike surfaces in Lorentz 3-space with prescribed mean curvature and
Gauss map, Hokkaido Math. J. 20 (1991), 447-464.
[47] Massey,W. S., Surfaces of Gaussian curvature zero in Euclidean 3-space, Tohoku Math. J. 14
(1962), 73-79.
[48] McNertney,L. V., One-parameter families of surfaces with constant curvature in Lorentz 3-
space, Ph. D. Thesis, Brown Univ., 1980.
[49] Milnor, T. K., Harmonic maps and classical surface theory in Minkowski 3-space, Trans.
Amer. Math. Soc. 280 (1983), 161-185.
[50] Mira, P. and Pastor, J. A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh.
Math. 140 (2003), 315-334.
[51] Musso, E. and Nicolodi, L., Closed trajectories of a particle model on null curves in anti-de
Sitter 3-space, Classical Quantum Gravity 24 (2007), 5401-5411.
[52] Musso, E. and Nicolodi, L., Reduction for constrained variational problems on 3D null curves,
preprint, math.DG. 0710.0483.
[53] Nomizu, K. and Sasaki, T., A±ne Dfferential Geometry. Geometry of A±ne Immersions,
Cambridge Tracts in Math. 111, Cambridge Univ. Press, 1994.
[54] Nutbourne, A. W. and Martin, R. R., Differential Geometry Applied to the Design of Curves
and Surfaces, Ellis Horwood, Chichester, UK, 1988.
[56] O'Neill, B., Semi-Riemannian Geometry with Application to Relativity, Academic Press,
1983.
[57] Otsuki, T., Differential Geometry (in Japanese), Asakura, 1961.
[58] Nassar, H. A.A. and Fathi, M. H., On an extension of the B-scroll surface in Lorentz 3-space R31
, Riv. Mat. Univ. Parma (6) 3 (2000), 57-67 (2001).
[59] Petrovic-Torga¸sev, M. and ¸Sucurovic, E., Some characterizations of the Lorentzian spherical
timelike and null curves, Math. Vesnik 53 (2001), 21-27.
(http://www.emis.de/journals/MV/0112/3.html )
[60] Pogolerov, A. W., Continuous maps of a bounded variations, Dokl. Acad. Nauk SSSR 111
1956 757-759.
[61] Pogolerov, A. W., An extension of Gauss' theorem on the spherical representation of surfaces
of bounded exterior curvature, Dokl. Acad. Nauk SSSR 111 1956 945-947.
[62] Sahin, B., Kilic, E. and Güneş, R., Null helices in R31, Differ. Geom. Dyn. Syst. 3 (2001),
31-36. (http://vectron.mathem.pub.ro/dgds/v3n2/v3n2.htm)
[63] Schief, W. K., On the integrability of Bertrand curves and Razzaboni surfaces, J. Geom.
Phys. 45 (2003), 130-150.
[64] Scofield, P. D., Curves of constant precession, Amer. Math. Monthly 102 (1995), No. 6,
531-537.
[65] Spivak, M., A Comprehensive Introduction to Di®erential Geometry, Second Edition, Vol. 4,
Publish or Perish, Wilmington, DE, 1979.
[66] Struik, D. J., Lectures on Classical Di®erential Geometry, Addison-Wesley Press Inc., Cam-
bridge, Mass., 1950, Reprint of the second edition, Dover, New York, 1988.
[67] Van de Woestijne, I., Minimal surfaces of the 3-dimensional Minkowski space, in: Geometry
and Topology of Submanifolds II (M. Boyom et al eds.), World Scienti¯c Publ., Teaneck, NJ,
1990, pp. 344-369.
[68] Weinstein, T., An Introduction to Lorentz Surfaces, de Gruyter Exposition in Math. vol. 22,
Walter de Gruyter, Berlin.
[69] Wong, Y. C., A global formulation of the condition for a curve to be lie in a sphere, Monatsch.
Math. 67 (1963), 363-365.
[70] Wong, Y. C., On an explicit characterization of spherical curves, Proc. Amer. Math. Soc. 34
(1972), 239{242. Erratum: 38(1973), 668.
Inoguchi, J. İ., & Lee, S. (2008). Null curves in Minkowski 3-space. International Electronic Journal of Geometry, 1(2), 40-83.
AMA
Inoguchi Jİ, Lee S. Null curves in Minkowski 3-space. Int. Electron. J. Geom. November 2008;1(2):40-83.
Chicago
Inoguchi, Jun İchi, and Sungwook Lee. “Null Curves in Minkowski 3-Space”. International Electronic Journal of Geometry 1, no. 2 (November 2008): 40-83.
EndNote
Inoguchi Jİ, Lee S (November 1, 2008) Null curves in Minkowski 3-space. International Electronic Journal of Geometry 1 2 40–83.
IEEE
J. İ. Inoguchi and S. Lee, “Null curves in Minkowski 3-space”, Int. Electron. J. Geom., vol. 1, no. 2, pp. 40–83, 2008.
ISNAD
Inoguchi, Jun İchi - Lee, Sungwook. “Null Curves in Minkowski 3-Space”. International Electronic Journal of Geometry 1/2 (November 2008), 40-83.
JAMA
Inoguchi Jİ, Lee S. Null curves in Minkowski 3-space. Int. Electron. J. Geom. 2008;1:40–83.
MLA
Inoguchi, Jun İchi and Sungwook Lee. “Null Curves in Minkowski 3-Space”. International Electronic Journal of Geometry, vol. 1, no. 2, 2008, pp. 40-83.
Vancouver
Inoguchi Jİ, Lee S. Null curves in Minkowski 3-space. Int. Electron. J. Geom. 2008;1(2):40-83.