[1] Aledo, J. A., Galvez, J. A. and Mira, P., Marginally trapped surfaces in L4 and an extended
Weierstrass-Bryant representation. Ann. Global Anal. Geom. 28 (2005) , 395-415.
[2] Andersson, L., Mars, M. and Simon, E., Local existence of dynamical and trapping horizons,
Phys. Rev. Letters 95 (2005), 111102-(1-4).
[3] Bray, H., Proof of the Riemannian Penrose inequality using the positive mass theorem, J.
Di®erential Geom. 59 (2001), 177-267.
[4] Chen, B. Y., A report on submanifolds of finite type. Soochow J. Math. 22 (1996), 117-337.
[5] Chen, B. Y., Realizations of Robertson-Walker space-times as affine hypersurfaces, J. Phys.
A, 40 (2007), 4241-4250.
[6] Chen B. Y., Classification of marginally trapped Lorentzian flat surfaces in E42
and its application to biharmonic surfaces. J. Math. Anal. Appl. 340 (2008), 861-875.
[7] Chen B. Y., δ-invariants, inequalities of submanifolds and their applications, Topics in Dif-
ferential Geometry (edited by A. Mihai, I. Mihai and R. Miron), Editura Academiei Romane,
Bucharest, 2008, pp. 29-155.
[8] Chen, B. Y. and Dillen, F., Classification of marginally trapped Lagrangian surfaces in
Lorentzian complex space forms. J. Math. Phys. 48 (2007), 013509, 23 pp; Erratum, J. Math.
Phys. 49 (2008), 059901.
[9] Chen, B. Y. and Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces. Memoirs Fac.
Sci. Kyushu Univ. Ser. A, Math. 45 (1991), 325-349.
[10] Chen, B. Y. and Ishikawa, S., Biharmonic pseudo-Riemannian submanifolds in pseudo-
Euclidean spaces. Kyushu J. Math. 52 (1998), 1-18.
[11] Chen, B. Y. and Mihai, I., Classification of quasi-minimal slant surfaces in Lorentzian complex
space forms. Acta Math. Hungar. 122 (2009), 307-328.
[12] Chen, B. Y. and Van der Veken, J., Marginally trapped surfaces in Lorentzian space forms
with positive relative nullity. Classical Quantum Gravity 24 (2007), 551-563.
[13] Chen, B. Y. and Van der Veken, J., Spatial and Lorentzian surfaces in Robertson-Walker
space-times. J. Math. Phys. 48, no. 7, 073509, 12 pages, 2007.
[14] Chen, B. Y. and Van der Veken, J., Classification of marginally trapped surfaces with parallel
mean curvature vector in Lorentzian space forms, Houston J. Math. (to appear).
[15] Chen, B. Y. and Van der Veken, J., Complete classi¯cation of parallel surfaces in Lorentzian
space forms, Tohoku Math. J. 61 (2009), 1-40.
[16] Einstein, A., Grundlage der allgemeinen Relativittstheorie, Ann, Phys. (Ser. 4) 51 (1916),
769-822.
[17] Haesen, S. and Ortega, M., Boost invariant marginally trapped surfaces in Minkowski 4-space.
Classical Quantum Gravity 24 (2007), 5441-5452.
[18] Haesen, S. and Verstraelen, L., Ideally embedded space-times, J. Math. Phys. 45 (2004),
1497-1510.
[19] Huisken, G. and Ilmanen, T., The Riemannian Penrose inequality, Internat. Math. Res.
Notices, 1997, no. 20, 1045-1058.
[20] Kaluza, T., Zum Unitatsproblem der Physik, Sitz. Preuss. Akad. der Wiss. Phys. Math.
Berlin, 1921, pp. 966-972.
[1] Aledo, J. A., Galvez, J. A. and Mira, P., Marginally trapped surfaces in L4 and an extended
Weierstrass-Bryant representation. Ann. Global Anal. Geom. 28 (2005) , 395-415.
[2] Andersson, L., Mars, M. and Simon, E., Local existence of dynamical and trapping horizons,
Phys. Rev. Letters 95 (2005), 111102-(1-4).
[3] Bray, H., Proof of the Riemannian Penrose inequality using the positive mass theorem, J.
Di®erential Geom. 59 (2001), 177-267.
[4] Chen, B. Y., A report on submanifolds of finite type. Soochow J. Math. 22 (1996), 117-337.
[5] Chen, B. Y., Realizations of Robertson-Walker space-times as affine hypersurfaces, J. Phys.
A, 40 (2007), 4241-4250.
[6] Chen B. Y., Classification of marginally trapped Lorentzian flat surfaces in E42
and its application to biharmonic surfaces. J. Math. Anal. Appl. 340 (2008), 861-875.
[7] Chen B. Y., δ-invariants, inequalities of submanifolds and their applications, Topics in Dif-
ferential Geometry (edited by A. Mihai, I. Mihai and R. Miron), Editura Academiei Romane,
Bucharest, 2008, pp. 29-155.
[8] Chen, B. Y. and Dillen, F., Classification of marginally trapped Lagrangian surfaces in
Lorentzian complex space forms. J. Math. Phys. 48 (2007), 013509, 23 pp; Erratum, J. Math.
Phys. 49 (2008), 059901.
[9] Chen, B. Y. and Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces. Memoirs Fac.
Sci. Kyushu Univ. Ser. A, Math. 45 (1991), 325-349.
[10] Chen, B. Y. and Ishikawa, S., Biharmonic pseudo-Riemannian submanifolds in pseudo-
Euclidean spaces. Kyushu J. Math. 52 (1998), 1-18.
[11] Chen, B. Y. and Mihai, I., Classification of quasi-minimal slant surfaces in Lorentzian complex
space forms. Acta Math. Hungar. 122 (2009), 307-328.
[12] Chen, B. Y. and Van der Veken, J., Marginally trapped surfaces in Lorentzian space forms
with positive relative nullity. Classical Quantum Gravity 24 (2007), 551-563.
[13] Chen, B. Y. and Van der Veken, J., Spatial and Lorentzian surfaces in Robertson-Walker
space-times. J. Math. Phys. 48, no. 7, 073509, 12 pages, 2007.
[14] Chen, B. Y. and Van der Veken, J., Classification of marginally trapped surfaces with parallel
mean curvature vector in Lorentzian space forms, Houston J. Math. (to appear).
[15] Chen, B. Y. and Van der Veken, J., Complete classi¯cation of parallel surfaces in Lorentzian
space forms, Tohoku Math. J. 61 (2009), 1-40.
[16] Einstein, A., Grundlage der allgemeinen Relativittstheorie, Ann, Phys. (Ser. 4) 51 (1916),
769-822.
[17] Haesen, S. and Ortega, M., Boost invariant marginally trapped surfaces in Minkowski 4-space.
Classical Quantum Gravity 24 (2007), 5441-5452.
[18] Haesen, S. and Verstraelen, L., Ideally embedded space-times, J. Math. Phys. 45 (2004),
1497-1510.
[19] Huisken, G. and Ilmanen, T., The Riemannian Penrose inequality, Internat. Math. Res.
Notices, 1997, no. 20, 1045-1058.
[20] Kaluza, T., Zum Unitatsproblem der Physik, Sitz. Preuss. Akad. der Wiss. Phys. Math.
Berlin, 1921, pp. 966-972.