[1] Bejancu, Aurel and Farran, Hani Reda, Foliations and Geometric Structures, Springer Verlag,
Berlin, 2006.
[2] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s), J. Differential
Geometry 4 (1970), 155–167.
[3] Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progr. Math., 203,
Birkhäuser Boston, Boston, MA, 2002.
[4] Brunetti, L. and Pastore, A.M., Curvature of a class of indefinite globally framed f -manifolds, Bull. Math. Soc. Sci. Math. Roumanie 51 99 (2008), no.3, 183–204.
[5] Brunetti, L. and Pastore, A.M., Examples of indefinite globally framed f -structures on compact Lie groups, Publ. Math. Debrecen 80 1-2 (2012), 215–234.
[6] Brunetti, L. and Pastore, A.M., On the classification of Lorentzian Sasaki space forms, Publications de l’Institut Mathématique Nouvelle série
94 (2013), no.108, 163-168.
[7] Cappelletti Montano, B. and Di Terlizzi L., D-homothetic transformations for a generalization
of contact metric manifolds, Bull. Belg.Math. Soc. 14 (2007), 277–289.
[8] Di Terlizzi, L. and Pastore, A.M., K-manifolds locally described by Sasaki manifolds, An. St.
Univ. Ovidius Constanta 21 (2013), no.3, 269–287.
[9] Di Terlizzi, L. and Konderak, J.J., Examples of a generalization of contact metric structures
on fibre bundles, J. of Geometry 87 (2007), 31–49.
[10] Duggal, Krishan L. and Bejancu, Aurel,
Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Acad. Publ.,
Dordrecht, 1996.
[11] Goldberg, S.I. and Yano, K., On normal globally framed f -manifolds, Tôhoku Math. J., 22
(1970), 362–370.
[12] Goldberg, S.I., On the existence of manifolds with an f -structure, Tensor,
N. S. 26 (1972), 323-329.
[13] Guediri, M. and Lafontaine, J., Sur la complétude des varietés pseudoriemanniennes, J. Geom.
Phys. 15 (1995), 150–158.
[14] Kobayashi,S. and Nomizu,K., Foundations of Differential Geometry, Vol. I, II Interscience Publish., New York, 1963,1969.
[15] Kobayashi, M., and Tsuhiya, S., Invariant submanifolds of an f -manifold with complemented
frames, Kodai Math. Semin. Rep. 24 (1972), 430–450.
[16] O’Neill, B., Semi-Riemannian geometry. Academic Press, New York, 1983.
[17] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J. 21 (1969),
no.2, 271–290.
[18] Tanno, S., The topology of contact Riemannian manifolds, Illinois J. Math. 12
(1968), 700–717.
[19] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J.
21 (1969), no.3, 501–507.
[20] Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying f 3 + f = 0, Tensor (N.S.) 14 (1963), 99–109.
[21] Wu, H., On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291–311.
S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems
[1] Bejancu, Aurel and Farran, Hani Reda, Foliations and Geometric Structures, Springer Verlag,
Berlin, 2006.
[2] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s), J. Differential
Geometry 4 (1970), 155–167.
[3] Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progr. Math., 203,
Birkhäuser Boston, Boston, MA, 2002.
[4] Brunetti, L. and Pastore, A.M., Curvature of a class of indefinite globally framed f -manifolds, Bull. Math. Soc. Sci. Math. Roumanie 51 99 (2008), no.3, 183–204.
[5] Brunetti, L. and Pastore, A.M., Examples of indefinite globally framed f -structures on compact Lie groups, Publ. Math. Debrecen 80 1-2 (2012), 215–234.
[6] Brunetti, L. and Pastore, A.M., On the classification of Lorentzian Sasaki space forms, Publications de l’Institut Mathématique Nouvelle série
94 (2013), no.108, 163-168.
[7] Cappelletti Montano, B. and Di Terlizzi L., D-homothetic transformations for a generalization
of contact metric manifolds, Bull. Belg.Math. Soc. 14 (2007), 277–289.
[8] Di Terlizzi, L. and Pastore, A.M., K-manifolds locally described by Sasaki manifolds, An. St.
Univ. Ovidius Constanta 21 (2013), no.3, 269–287.
[9] Di Terlizzi, L. and Konderak, J.J., Examples of a generalization of contact metric structures
on fibre bundles, J. of Geometry 87 (2007), 31–49.
[10] Duggal, Krishan L. and Bejancu, Aurel,
Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Acad. Publ.,
Dordrecht, 1996.
[11] Goldberg, S.I. and Yano, K., On normal globally framed f -manifolds, Tôhoku Math. J., 22
(1970), 362–370.
[12] Goldberg, S.I., On the existence of manifolds with an f -structure, Tensor,
N. S. 26 (1972), 323-329.
[13] Guediri, M. and Lafontaine, J., Sur la complétude des varietés pseudoriemanniennes, J. Geom.
Phys. 15 (1995), 150–158.
[14] Kobayashi,S. and Nomizu,K., Foundations of Differential Geometry, Vol. I, II Interscience Publish., New York, 1963,1969.
[15] Kobayashi, M., and Tsuhiya, S., Invariant submanifolds of an f -manifold with complemented
frames, Kodai Math. Semin. Rep. 24 (1972), 430–450.
[16] O’Neill, B., Semi-Riemannian geometry. Academic Press, New York, 1983.
[17] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J. 21 (1969),
no.2, 271–290.
[18] Tanno, S., The topology of contact Riemannian manifolds, Illinois J. Math. 12
(1968), 700–717.
[19] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J.
21 (1969), no.3, 501–507.
[20] Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying f 3 + f = 0, Tensor (N.S.) 14 (1963), 99–109.
[21] Wu, H., On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291–311.
Brunetti, L., & Pastore, A. M. (2016). S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. International Electronic Journal of Geometry, 9(1), 1-8. https://doi.org/10.36890/iejg.591878
AMA
Brunetti L, Pastore AM. S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. Int. Electron. J. Geom. April 2016;9(1):1-8. doi:10.36890/iejg.591878
Chicago
Brunetti, Letizia, and Anna Maria Pastore. “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”. International Electronic Journal of Geometry 9, no. 1 (April 2016): 1-8. https://doi.org/10.36890/iejg.591878.
EndNote
Brunetti L, Pastore AM (April 1, 2016) S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. International Electronic Journal of Geometry 9 1 1–8.
IEEE
L. Brunetti and A. M. Pastore, “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”, Int. Electron. J. Geom., vol. 9, no. 1, pp. 1–8, 2016, doi: 10.36890/iejg.591878.
ISNAD
Brunetti, Letizia - Pastore, Anna Maria. “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”. International Electronic Journal of Geometry 9/1 (April 2016), 1-8. https://doi.org/10.36890/iejg.591878.
JAMA
Brunetti L, Pastore AM. S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. Int. Electron. J. Geom. 2016;9:1–8.
MLA
Brunetti, Letizia and Anna Maria Pastore. “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”. International Electronic Journal of Geometry, vol. 9, no. 1, 2016, pp. 1-8, doi:10.36890/iejg.591878.
Vancouver
Brunetti L, Pastore AM. S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. Int. Electron. J. Geom. 2016;9(1):1-8.