Araştırma Makalesi
BibTex RIS Kaynak Göster

THE ISOMETRY GROUP OF CHINESE CHECKER SPACE

Yıl 2015, Cilt: 8 Sayı: 2, 82 - 96, 30.10.2015
https://doi.org/10.36890/iejg.592291

Öz


Kaynakça

  • [1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
  • [2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Amstrong, M. A., Groups and Symmetry Springer-Verlag New York Inc., 1988.
  • [4] Chen, G., Lines and Circles in Taxicab Geometry Master Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1992.
  • [5] Çolakoğlu, H. B. and Kaya, R., On The Regular Polygons in The Chinese Checker Plane, Appl. Sci. 10 (2008) 29-37.
  • [6] Gelişgen, Ö ., Kaya, R. and Özcan, M., Distance Formulae in the Chinese Checker Space, Int. J. Pure Appl. Math. 26 (2006), no. 1, 35–44.
  • [7] Geli¸sgen, Ö . and Kaya, R., Alpha(i) Distance in n-dimensional Space, Appl. Sci. 10 (2008), 88–93.
  • [8] Gelişgen, Ö. and Kaya, R., The Taxicab Space Group, Acta Math. Hungar. 122 (2009), no. 1-2, 187–200.
  • [9] Kaya, R., Gelişgen, Ö ., Ekmekc¸i S. and Bayar, A., Group of Isometries of CC-Plane, Missouri J. Math. Sci. 18 (2006) 221–233.
  • [10] Kaya, R., Geli¸sgen, Ö ., Ekmekçi S. and Bayar, A., On The Group of Isometries of The Plane with Generalized Absolute Value Metric, Rocky Mountain J. Math. 39 (2009), no. 2, 591–603.
  • [11] Krause, E. F., Taxicab Geometry Addison - Wesley Publishing Company, Menlo Park, CA, 1975.
  • [12] Martin, G. E., Transformation Geometry Springer-Verlag New York Inc., 1997.
  • [13] Schattschneider, D. J., The Taxicab Group, Amer. Math. Monthly 91 (1984) 423-428.
  • [14] Shen, C. F. C., The Lambda-Geometry Steiner Minimal Tree Problem and Visualization, Phd Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1997.
  • [15] So, S. S., Recent Development in Metric Geometry, Proceedings of the 5.th National Geometry Symposioum, University of Sakarya, (Sakarya), 2005.
  • [16] Thompson, A. C., Minkowski Geometry Cambridge University Press, 1996.
  • [17] http://en.wikipedia.org/wiki/Rotation matrix
Yıl 2015, Cilt: 8 Sayı: 2, 82 - 96, 30.10.2015
https://doi.org/10.36890/iejg.592291

Öz

Kaynakça

  • [1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
  • [2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Amstrong, M. A., Groups and Symmetry Springer-Verlag New York Inc., 1988.
  • [4] Chen, G., Lines and Circles in Taxicab Geometry Master Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1992.
  • [5] Çolakoğlu, H. B. and Kaya, R., On The Regular Polygons in The Chinese Checker Plane, Appl. Sci. 10 (2008) 29-37.
  • [6] Gelişgen, Ö ., Kaya, R. and Özcan, M., Distance Formulae in the Chinese Checker Space, Int. J. Pure Appl. Math. 26 (2006), no. 1, 35–44.
  • [7] Geli¸sgen, Ö . and Kaya, R., Alpha(i) Distance in n-dimensional Space, Appl. Sci. 10 (2008), 88–93.
  • [8] Gelişgen, Ö. and Kaya, R., The Taxicab Space Group, Acta Math. Hungar. 122 (2009), no. 1-2, 187–200.
  • [9] Kaya, R., Gelişgen, Ö ., Ekmekc¸i S. and Bayar, A., Group of Isometries of CC-Plane, Missouri J. Math. Sci. 18 (2006) 221–233.
  • [10] Kaya, R., Geli¸sgen, Ö ., Ekmekçi S. and Bayar, A., On The Group of Isometries of The Plane with Generalized Absolute Value Metric, Rocky Mountain J. Math. 39 (2009), no. 2, 591–603.
  • [11] Krause, E. F., Taxicab Geometry Addison - Wesley Publishing Company, Menlo Park, CA, 1975.
  • [12] Martin, G. E., Transformation Geometry Springer-Verlag New York Inc., 1997.
  • [13] Schattschneider, D. J., The Taxicab Group, Amer. Math. Monthly 91 (1984) 423-428.
  • [14] Shen, C. F. C., The Lambda-Geometry Steiner Minimal Tree Problem and Visualization, Phd Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1997.
  • [15] So, S. S., Recent Development in Metric Geometry, Proceedings of the 5.th National Geometry Symposioum, University of Sakarya, (Sakarya), 2005.
  • [16] Thompson, A. C., Minkowski Geometry Cambridge University Press, 1996.
  • [17] http://en.wikipedia.org/wiki/Rotation matrix
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Özcan Gelişgen

Rüstem Kaya Bu kişi benim

Yayımlanma Tarihi 30 Ekim 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 8 Sayı: 2

Kaynak Göster

APA Gelişgen, Ö., & Kaya, R. (2015). THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. International Electronic Journal of Geometry, 8(2), 82-96. https://doi.org/10.36890/iejg.592291
AMA Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. Ekim 2015;8(2):82-96. doi:10.36890/iejg.592291
Chicago Gelişgen, Özcan, ve Rüstem Kaya. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry 8, sy. 2 (Ekim 2015): 82-96. https://doi.org/10.36890/iejg.592291.
EndNote Gelişgen Ö, Kaya R (01 Ekim 2015) THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. International Electronic Journal of Geometry 8 2 82–96.
IEEE Ö. Gelişgen ve R. Kaya, “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”, Int. Electron. J. Geom., c. 8, sy. 2, ss. 82–96, 2015, doi: 10.36890/iejg.592291.
ISNAD Gelişgen, Özcan - Kaya, Rüstem. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry 8/2 (Ekim 2015), 82-96. https://doi.org/10.36890/iejg.592291.
JAMA Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. 2015;8:82–96.
MLA Gelişgen, Özcan ve Rüstem Kaya. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry, c. 8, sy. 2, 2015, ss. 82-96, doi:10.36890/iejg.592291.
Vancouver Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. 2015;8(2):82-96.