Araştırma Makalesi
BibTex RIS Kaynak Göster

A NEW KIND OF HELICOIDAL SURFACE OF VALUE M

Yıl 2014, Cilt: 7 Sayı: 1, 154 - 162, 30.04.2014
https://doi.org/10.36890/iejg.594506

Öz

  

Kaynakça

  • [1] Baikoussis, Chr., Koufogiorgos, T., Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom. 63 (1998) 25-29.
  • [2] Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J., A classification of surfaces of revolution of constant Gaussian curvature in the Minkowski space R3, Bull. Calcutta Math. Soc. 90(1998) 441-458.
  • [3] Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 275 (2002) 586-614.
  • [4] Bour, E., Théorie de la déformation des surfaces. J. de l’Êcole Imperiale Polytechnique, 22-39 (1862) 1-148.
  • [5] Do Carmo, M., Dajczer, M., Helicoidal surfaces with constant mean curvature, Tohôku Math. J. 34 (1982) 351-367.
  • [6] Dillen, F., Kühnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999) 307-320.
  • [7] Eisenhart, L., A Treatise on the Differential Geometry of Curves and Surfaces, Palermo 41 Ginn and Company, 1909.
  • [8] Güler, E., Bour’s theorem and lightlike profile curve. Yokohama Math. J., 54-1 (2007) 55-77.
  • [9] Güler, E., Yaylı, Y., Hacısalihoğlu, H.H., Bour’s theorem on Gauss map in Euclidean 3-space, Hacettepe J. Math. Stat. 39-4 (2010) 515-525.
  • [10] Güler, E., Bour’s minimal surface in three dimensional Lorentz-Minkowski space, (presented in GeLoSP2013, VII International Meetings on Lorentzian Geometry, Sao Paulo University, Sao Paulo, Brasil) preprint.
  • [11] Hitt, L, Roussos, I., Computer graphics of helicoidal surfaces with constant mean curvature, An. Acad. Brasil. Ciˆenc. 63 (1991) 211-228.
  • [12] Ikawa, T., Bour’s theorem and Gauss map, Yokohama Math. J. 48-2 (2000) 173-180. [13] Ikawa, T., Bour’s theorem in Minkowski geometry, Tokyo J.Math. 24 (2001) 377-394.
  • [14] Kenmotsu, K., Surfaces of revolution with prescribed mean curvature, Tohôku Math. J. 32 (1980) 147-153.
  • [15] Spivac, M., A Comprehensive Introduction to Differential Geometry III, Interscience, New York, 1969.
  • [16] Struik, D.J., Lectures on Differential Geometry, Addison-Wesley, 1961.
Yıl 2014, Cilt: 7 Sayı: 1, 154 - 162, 30.04.2014
https://doi.org/10.36890/iejg.594506

Öz

Kaynakça

  • [1] Baikoussis, Chr., Koufogiorgos, T., Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom. 63 (1998) 25-29.
  • [2] Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J., A classification of surfaces of revolution of constant Gaussian curvature in the Minkowski space R3, Bull. Calcutta Math. Soc. 90(1998) 441-458.
  • [3] Beneki, Chr. C., Kaimakamis, G., Papantoniou, B.J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 275 (2002) 586-614.
  • [4] Bour, E., Théorie de la déformation des surfaces. J. de l’Êcole Imperiale Polytechnique, 22-39 (1862) 1-148.
  • [5] Do Carmo, M., Dajczer, M., Helicoidal surfaces with constant mean curvature, Tohôku Math. J. 34 (1982) 351-367.
  • [6] Dillen, F., Kühnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999) 307-320.
  • [7] Eisenhart, L., A Treatise on the Differential Geometry of Curves and Surfaces, Palermo 41 Ginn and Company, 1909.
  • [8] Güler, E., Bour’s theorem and lightlike profile curve. Yokohama Math. J., 54-1 (2007) 55-77.
  • [9] Güler, E., Yaylı, Y., Hacısalihoğlu, H.H., Bour’s theorem on Gauss map in Euclidean 3-space, Hacettepe J. Math. Stat. 39-4 (2010) 515-525.
  • [10] Güler, E., Bour’s minimal surface in three dimensional Lorentz-Minkowski space, (presented in GeLoSP2013, VII International Meetings on Lorentzian Geometry, Sao Paulo University, Sao Paulo, Brasil) preprint.
  • [11] Hitt, L, Roussos, I., Computer graphics of helicoidal surfaces with constant mean curvature, An. Acad. Brasil. Ciˆenc. 63 (1991) 211-228.
  • [12] Ikawa, T., Bour’s theorem and Gauss map, Yokohama Math. J. 48-2 (2000) 173-180. [13] Ikawa, T., Bour’s theorem in Minkowski geometry, Tokyo J.Math. 24 (2001) 377-394.
  • [14] Kenmotsu, K., Surfaces of revolution with prescribed mean curvature, Tohôku Math. J. 32 (1980) 147-153.
  • [15] Spivac, M., A Comprehensive Introduction to Differential Geometry III, Interscience, New York, 1969.
  • [16] Struik, D.J., Lectures on Differential Geometry, Addison-Wesley, 1961.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Erhan Güler

Yayımlanma Tarihi 30 Nisan 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 7 Sayı: 1

Kaynak Göster

APA Güler, E. (2014). A NEW KIND OF HELICOIDAL SURFACE OF VALUE M. International Electronic Journal of Geometry, 7(1), 154-162. https://doi.org/10.36890/iejg.594506
AMA Güler E. A NEW KIND OF HELICOIDAL SURFACE OF VALUE M. Int. Electron. J. Geom. Nisan 2014;7(1):154-162. doi:10.36890/iejg.594506
Chicago Güler, Erhan. “A NEW KIND OF HELICOIDAL SURFACE OF VALUE M”. International Electronic Journal of Geometry 7, sy. 1 (Nisan 2014): 154-62. https://doi.org/10.36890/iejg.594506.
EndNote Güler E (01 Nisan 2014) A NEW KIND OF HELICOIDAL SURFACE OF VALUE M. International Electronic Journal of Geometry 7 1 154–162.
IEEE E. Güler, “A NEW KIND OF HELICOIDAL SURFACE OF VALUE M”, Int. Electron. J. Geom., c. 7, sy. 1, ss. 154–162, 2014, doi: 10.36890/iejg.594506.
ISNAD Güler, Erhan. “A NEW KIND OF HELICOIDAL SURFACE OF VALUE M”. International Electronic Journal of Geometry 7/1 (Nisan 2014), 154-162. https://doi.org/10.36890/iejg.594506.
JAMA Güler E. A NEW KIND OF HELICOIDAL SURFACE OF VALUE M. Int. Electron. J. Geom. 2014;7:154–162.
MLA Güler, Erhan. “A NEW KIND OF HELICOIDAL SURFACE OF VALUE M”. International Electronic Journal of Geometry, c. 7, sy. 1, 2014, ss. 154-62, doi:10.36890/iejg.594506.
Vancouver Güler E. A NEW KIND OF HELICOIDAL SURFACE OF VALUE M. Int. Electron. J. Geom. 2014;7(1):154-62.