Year 2010,
Volume: 3 Issue: 2, 49 - 52, 30.10.2010
Michael Braun
References
- [1] Braun, M., Designs over Finite Fields. In ALCOMA’05 — Proceedings of the Conference on
Algebraic Combinatorics and Applications, Designs and Codes, April 3-10, 2005, Thurnau, Germany,
Bayreuther Mathematische Schriften 74 (2005), pages 58–68.
- [2] Braun, M., Kerber, A. and Laue, R., Systematic Construction of q-Analogs of Designs.
Designs, Codes, Cryptography 34 (2005), pages 55–70.
- [3] Ray-Chaudhuri, D. K. and Schram, E. J., Designs on Vectorspaces Constructed Using Qua- dratic
Forms. Geometriae Dedicata 42 (1992), pages 1–42.
- [4] Itoh, T., A New Family of 2-Designs over GF (q) Admitting SLm(ql). Geometriae Dedicata
69 (1998), pages 261–286.
- [5] Miyakawa, M., Munemasa, A. and Yoshiara, S., On a Class of Small 2-Designs over GF (q).
Journal of Combinatorial Designs 3 (1995), pages 61–77.
- [6] Suzuki, H., 2-Designs over GF (2m). Graphs and Combinatorics 6 (1990), pages 293–296.
- [7] Suzuki, H., 2-Designs over GF (q). Graphs and Combinatorics 8 (1992), pages 381–389.
- [8] Thomas, S. , Designs over Finite Fields. Geometriae Dedicata 24 (1987), pages 237–242.
A Note On Balanced Incomplete Block Designs
Year 2010,
Volume: 3 Issue: 2, 49 - 52, 30.10.2010
Michael Braun
Abstract
![]()
References
- [1] Braun, M., Designs over Finite Fields. In ALCOMA’05 — Proceedings of the Conference on
Algebraic Combinatorics and Applications, Designs and Codes, April 3-10, 2005, Thurnau, Germany,
Bayreuther Mathematische Schriften 74 (2005), pages 58–68.
- [2] Braun, M., Kerber, A. and Laue, R., Systematic Construction of q-Analogs of Designs.
Designs, Codes, Cryptography 34 (2005), pages 55–70.
- [3] Ray-Chaudhuri, D. K. and Schram, E. J., Designs on Vectorspaces Constructed Using Qua- dratic
Forms. Geometriae Dedicata 42 (1992), pages 1–42.
- [4] Itoh, T., A New Family of 2-Designs over GF (q) Admitting SLm(ql). Geometriae Dedicata
69 (1998), pages 261–286.
- [5] Miyakawa, M., Munemasa, A. and Yoshiara, S., On a Class of Small 2-Designs over GF (q).
Journal of Combinatorial Designs 3 (1995), pages 61–77.
- [6] Suzuki, H., 2-Designs over GF (2m). Graphs and Combinatorics 6 (1990), pages 293–296.
- [7] Suzuki, H., 2-Designs over GF (q). Graphs and Combinatorics 8 (1992), pages 381–389.
- [8] Thomas, S. , Designs over Finite Fields. Geometriae Dedicata 24 (1987), pages 237–242.
There are 8 citations in total.