Birincil Dil | en |
---|---|
Bölüm | Araştırma Makalesi |
Yazarlar | |
Tarihler |
Yayımlanma Tarihi : 3 Ekim 2019 |
Bibtex | @araştırma makalesi { iejg628073,
journal = {International Electronic Journal of Geometry},
issn = {},
eissn = {1307-5624},
address = {},
publisher = {Kazım İLARSLAN},
year = {2019},
volume = {12},
pages = {157 - 168},
doi = {},
title = {Gradient Yamabe Solitons on Multiply Warped Product Manifolds},
key = {cite},
author = {Karaca, Fatma}
} |
APA | Karaca, F . (2019). Gradient Yamabe Solitons on Multiply Warped Product Manifolds. International Electronic Journal of Geometry , 12 (2) , 157-168 . Retrieved from https://dergipark.org.tr/tr/pub/iejg/issue/49199/628073 |
MLA | Karaca, F . "Gradient Yamabe Solitons on Multiply Warped Product Manifolds". International Electronic Journal of Geometry 12 (2019 ): 157-168 <https://dergipark.org.tr/tr/pub/iejg/issue/49199/628073> |
Chicago | Karaca, F . "Gradient Yamabe Solitons on Multiply Warped Product Manifolds". International Electronic Journal of Geometry 12 (2019 ): 157-168 |
RIS | TY - JOUR T1 - Gradient Yamabe Solitons on Multiply Warped Product Manifolds AU - Fatma Karaca Y1 - 2019 PY - 2019 N1 - DO - T2 - International Electronic Journal of Geometry JF - Journal JO - JOR SP - 157 EP - 168 VL - 12 IS - 2 SN - -1307-5624 M3 - UR - Y2 - 2019 ER - |
EndNote | %0 International Electronic Journal of Geometry Gradient Yamabe Solitons on Multiply Warped Product Manifolds %A Fatma Karaca %T Gradient Yamabe Solitons on Multiply Warped Product Manifolds %D 2019 %J International Electronic Journal of Geometry %P -1307-5624 %V 12 %N 2 %R %U |
ISNAD | Karaca, Fatma . "Gradient Yamabe Solitons on Multiply Warped Product Manifolds". International Electronic Journal of Geometry 12 / 2 (Ekim 2019): 157-168 . |
AMA | Karaca F . Gradient Yamabe Solitons on Multiply Warped Product Manifolds. International Electronic Journal of Geometry. 2019; 12(2): 157-168. |
Vancouver | Karaca F . Gradient Yamabe Solitons on Multiply Warped Product Manifolds. International Electronic Journal of Geometry. 2019; 12(2): 168-157. |