Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 12 Sayı: 2, 223 - 228, 03.10.2019
https://doi.org/10.36890/iejg.628087

Öz

Kaynakça

  • [1] Alexander, S., Local and global convexity in complete Riemannian manifolds. Pacific Journal of Mathematics 76(1978), no. 2 , 283-289.
  • [2] Balashov, M. V., An Analog of the Krein-Mil’man Theorem for Strongly Convex Hulls in Hilbert Space. Mathematical Notes 71(2002), no. 1-2 , 34-38.
  • [3] Beltagy, M., Sufficient conditions for convexity in manifolds without focal points. Comment. Math. Univ. Carolinae 34 (1993), 443-449.
  • [4] Beltagy, M., Local and global exposed points. Acta Mathematica Scientia 15(1995), no. 3 , 335-341.
  • [5] Beltagy, M., On starshaped sets. Bull. Malays. Math. Soc., II. Ser. 11(1988), no. 2 , 49–57.
  • [6] Burns, K., The flat strip theorem fails for surfaces with no conjugate points. Proceedings of the American Mathematical Society 115(1992), no. 1, 199-206.
  • [7] Eberlein, P., Geodesic flow in certain manifolds without conjugate points. Transactions of the American Mathematical Society 167 (1972), 151-170.
  • [8] Emmerich, P., Rigidity of complete Riemannian manifolds without conjugate points. Shaker Verlag Gmbh, Germa, 2013.
  • [9] Green, L. W., Surfaces without conjugate points. Transactions of the American Mathematical Society 76(1954), no. 3 , 529-546.
  • [10] Goto, M. S., Manifolds without focal points. Journal of Differential Geometry 13(1978), no. 3 , 341-359.
  • [11] Gulliver, R., On the variety of manifolds without conjugate points. Transactions of the American Mathematical Society 210 (1975), 185-201.
  • [12] Ivanov, S. and Vitali K. Manifolds without conjugate points and their fundamental groups. Journal of Differential Geometry 96(2014), no. 2 , 223-240.
  • [13] Jaume, D. A. and Rubén, P., Conjugacy for closed convex sets. Contributions to Algebra and Geometry 46 (2005), no. 1, 131-149.
  • [14] Lay, S.R., Convex sets and their applications. Courier Corporation, 2007.
  • [15] Li, S. and Yicheng G., On the relations of a convex set and its profile. In Integral Geometry and Convexity pp. 199-211. 2006.

Convex and Starshaped Sets in Manifolds Without Conjugate Points

Yıl 2019, Cilt: 12 Sayı: 2, 223 - 228, 03.10.2019
https://doi.org/10.36890/iejg.628087

Öz


Kaynakça

  • [1] Alexander, S., Local and global convexity in complete Riemannian manifolds. Pacific Journal of Mathematics 76(1978), no. 2 , 283-289.
  • [2] Balashov, M. V., An Analog of the Krein-Mil’man Theorem for Strongly Convex Hulls in Hilbert Space. Mathematical Notes 71(2002), no. 1-2 , 34-38.
  • [3] Beltagy, M., Sufficient conditions for convexity in manifolds without focal points. Comment. Math. Univ. Carolinae 34 (1993), 443-449.
  • [4] Beltagy, M., Local and global exposed points. Acta Mathematica Scientia 15(1995), no. 3 , 335-341.
  • [5] Beltagy, M., On starshaped sets. Bull. Malays. Math. Soc., II. Ser. 11(1988), no. 2 , 49–57.
  • [6] Burns, K., The flat strip theorem fails for surfaces with no conjugate points. Proceedings of the American Mathematical Society 115(1992), no. 1, 199-206.
  • [7] Eberlein, P., Geodesic flow in certain manifolds without conjugate points. Transactions of the American Mathematical Society 167 (1972), 151-170.
  • [8] Emmerich, P., Rigidity of complete Riemannian manifolds without conjugate points. Shaker Verlag Gmbh, Germa, 2013.
  • [9] Green, L. W., Surfaces without conjugate points. Transactions of the American Mathematical Society 76(1954), no. 3 , 529-546.
  • [10] Goto, M. S., Manifolds without focal points. Journal of Differential Geometry 13(1978), no. 3 , 341-359.
  • [11] Gulliver, R., On the variety of manifolds without conjugate points. Transactions of the American Mathematical Society 210 (1975), 185-201.
  • [12] Ivanov, S. and Vitali K. Manifolds without conjugate points and their fundamental groups. Journal of Differential Geometry 96(2014), no. 2 , 223-240.
  • [13] Jaume, D. A. and Rubén, P., Conjugacy for closed convex sets. Contributions to Algebra and Geometry 46 (2005), no. 1, 131-149.
  • [14] Lay, S.R., Convex sets and their applications. Courier Corporation, 2007.
  • [15] Li, S. and Yicheng G., On the relations of a convex set and its profile. In Integral Geometry and Convexity pp. 199-211. 2006.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Sameh Shenawy Bu kişi benim

Yayımlanma Tarihi 3 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 2

Kaynak Göster

APA Shenawy, S. (2019). Convex and Starshaped Sets in Manifolds Without Conjugate Points. International Electronic Journal of Geometry, 12(2), 223-228. https://doi.org/10.36890/iejg.628087
AMA Shenawy S. Convex and Starshaped Sets in Manifolds Without Conjugate Points. Int. Electron. J. Geom. Ekim 2019;12(2):223-228. doi:10.36890/iejg.628087
Chicago Shenawy, Sameh. “Convex and Starshaped Sets in Manifolds Without Conjugate Points”. International Electronic Journal of Geometry 12, sy. 2 (Ekim 2019): 223-28. https://doi.org/10.36890/iejg.628087.
EndNote Shenawy S (01 Ekim 2019) Convex and Starshaped Sets in Manifolds Without Conjugate Points. International Electronic Journal of Geometry 12 2 223–228.
IEEE S. Shenawy, “Convex and Starshaped Sets in Manifolds Without Conjugate Points”, Int. Electron. J. Geom., c. 12, sy. 2, ss. 223–228, 2019, doi: 10.36890/iejg.628087.
ISNAD Shenawy, Sameh. “Convex and Starshaped Sets in Manifolds Without Conjugate Points”. International Electronic Journal of Geometry 12/2 (Ekim 2019), 223-228. https://doi.org/10.36890/iejg.628087.
JAMA Shenawy S. Convex and Starshaped Sets in Manifolds Without Conjugate Points. Int. Electron. J. Geom. 2019;12:223–228.
MLA Shenawy, Sameh. “Convex and Starshaped Sets in Manifolds Without Conjugate Points”. International Electronic Journal of Geometry, c. 12, sy. 2, 2019, ss. 223-8, doi:10.36890/iejg.628087.
Vancouver Shenawy S. Convex and Starshaped Sets in Manifolds Without Conjugate Points. Int. Electron. J. Geom. 2019;12(2):223-8.