Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 13 Sayı: 1, 1 - 8, 30.01.2020
https://doi.org/10.36890/iejg.690479

Öz

Kaynakça

  • [1] Beldjilali, G.: Induced Structures on Golden Riemannian Manifolds. Beitr Algebra Geom. 59 (4), 761-777 (2018).
  • [2] Beldjilali, G.: s-Golden manifolds, Mediterr. J. Math. (2019). https://doi.org/10.1007/s00009-019-1343-9.
  • [3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, Vol. 203, Birhauser, Boston, (2002).
  • [4] Boyer, C.P., Galicki, K., Matzeu, P.: On Eta-Einstein Sasakian Geometry. Comm.Math. Phys. 262, 177-208 (2006).
  • [5] Crasmareanu, M., Hretecanu C.E.: Golden differential geometry. Chaos, Solitons & Fractals. 38, 1124-1146 (2008).
  • [6] Etayo, F., Santamaria R., Upadhyay, A.: On the Geometry of Almost Golden Riemannian Manifolds, Mediterr. J. Math. 14,14-187 (2017). doi 10.1007/s00009-017-0991-x.
  • [7] Gezer, A., Cengiz N., Salimov, A.: On integrability of Golden Riemannian structures. Turkish J.Math. 37, 693-703 (2013).
  • [8] Gezer, A., Karaman, C.: Golden-Hessian Structures. Proc. Nat. Acad. Sci. 86, 41-46 (2016).
  • [9] Hretcanu, C. E.: Submanifolds in Riemannian manifold with Golden structure. In: Workshop on Finsler Geometry and its Applications, Hungary (2007).
  • [10] Ozkan, M., Yilmaz, F.: Prolongation of Golden structures to tangent bundles of order r. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. Volume 65 (1), 35-47 (2016).
  • [11] Sahin, B., Akyol, M. A.: Golden maps between Golden Riemannian manifolds and constancy of certain maps. Math. Commun. 19, 333-342 (2014).
  • [12] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Math., Vol 3, World Sci., (1984).

A New Class of Golden Riemannian Manifold

Yıl 2020, Cilt: 13 Sayı: 1, 1 - 8, 30.01.2020
https://doi.org/10.36890/iejg.690479

Öz

In this paper, we introduce a new class of almost Golden Riemannian structures and study their essential examples as well as their fundamental properties. Next, we investigate a particular type belonging to this class and we establish some basic results for Riemannian curvature tensor and the sectional curvature. Concrete examples are given.



Kaynakça

  • [1] Beldjilali, G.: Induced Structures on Golden Riemannian Manifolds. Beitr Algebra Geom. 59 (4), 761-777 (2018).
  • [2] Beldjilali, G.: s-Golden manifolds, Mediterr. J. Math. (2019). https://doi.org/10.1007/s00009-019-1343-9.
  • [3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, Vol. 203, Birhauser, Boston, (2002).
  • [4] Boyer, C.P., Galicki, K., Matzeu, P.: On Eta-Einstein Sasakian Geometry. Comm.Math. Phys. 262, 177-208 (2006).
  • [5] Crasmareanu, M., Hretecanu C.E.: Golden differential geometry. Chaos, Solitons & Fractals. 38, 1124-1146 (2008).
  • [6] Etayo, F., Santamaria R., Upadhyay, A.: On the Geometry of Almost Golden Riemannian Manifolds, Mediterr. J. Math. 14,14-187 (2017). doi 10.1007/s00009-017-0991-x.
  • [7] Gezer, A., Cengiz N., Salimov, A.: On integrability of Golden Riemannian structures. Turkish J.Math. 37, 693-703 (2013).
  • [8] Gezer, A., Karaman, C.: Golden-Hessian Structures. Proc. Nat. Acad. Sci. 86, 41-46 (2016).
  • [9] Hretcanu, C. E.: Submanifolds in Riemannian manifold with Golden structure. In: Workshop on Finsler Geometry and its Applications, Hungary (2007).
  • [10] Ozkan, M., Yilmaz, F.: Prolongation of Golden structures to tangent bundles of order r. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. Volume 65 (1), 35-47 (2016).
  • [11] Sahin, B., Akyol, M. A.: Golden maps between Golden Riemannian manifolds and constancy of certain maps. Math. Commun. 19, 333-342 (2014).
  • [12] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Math., Vol 3, World Sci., (1984).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Gherici Beldjilali Bu kişi benim

Yayımlanma Tarihi 30 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 1

Kaynak Göster

APA Beldjilali, G. (2020). A New Class of Golden Riemannian Manifold. International Electronic Journal of Geometry, 13(1), 1-8. https://doi.org/10.36890/iejg.690479
AMA Beldjilali G. A New Class of Golden Riemannian Manifold. Int. Electron. J. Geom. Ocak 2020;13(1):1-8. doi:10.36890/iejg.690479
Chicago Beldjilali, Gherici. “A New Class of Golden Riemannian Manifold”. International Electronic Journal of Geometry 13, sy. 1 (Ocak 2020): 1-8. https://doi.org/10.36890/iejg.690479.
EndNote Beldjilali G (01 Ocak 2020) A New Class of Golden Riemannian Manifold. International Electronic Journal of Geometry 13 1 1–8.
IEEE G. Beldjilali, “A New Class of Golden Riemannian Manifold”, Int. Electron. J. Geom., c. 13, sy. 1, ss. 1–8, 2020, doi: 10.36890/iejg.690479.
ISNAD Beldjilali, Gherici. “A New Class of Golden Riemannian Manifold”. International Electronic Journal of Geometry 13/1 (Ocak 2020), 1-8. https://doi.org/10.36890/iejg.690479.
JAMA Beldjilali G. A New Class of Golden Riemannian Manifold. Int. Electron. J. Geom. 2020;13:1–8.
MLA Beldjilali, Gherici. “A New Class of Golden Riemannian Manifold”. International Electronic Journal of Geometry, c. 13, sy. 1, 2020, ss. 1-8, doi:10.36890/iejg.690479.
Vancouver Beldjilali G. A New Class of Golden Riemannian Manifold. Int. Electron. J. Geom. 2020;13(1):1-8.