Araştırma Makalesi
BibTex RIS Kaynak Göster

Dual Transformations in Galilean Spaces

Yıl 2020, Cilt: 13 Sayı: 2, 52 - 61, 15.10.2020
https://doi.org/10.36890/iejg.683738

Öz

In this study, we define a dual transformation between $G^{n}$ and $G^{n}_{1}$. We examine the invariance of the plane where the shear motion is acting in Galilean and pseudo-Galilean spaces. We define a dual transformation between $\widehat{G^{n}}$ and $\widehat{G^{n}_{1}}$ as well. We provide applications in $G^{3}$ and $G^{3}_{1}$. In addition to applications, we draw their figures in order to reinforce the visualization in both spaces........  .                                         ....................                                                                                                                   .

Kaynakça

  • [1] Tütüncü, E. E., : The Geometry of Motions in the Galile Spaces, Phd. Thesis, Ankara University Graduate School of Natural and AppliedSciences, 2009.
  • [2] Dohi R., Maeda Y., Mori M., Yoshida H.: A dual transformation between $S\widehat{O}(n+1)$ and $S\widehat{O}(n,1)$ and its geometric applications, Linear Algebra and its Applications 432: (2010), 770-776.
  • [3] Yüca G., Yaylı Y.: A dual transformation between $S\widehat{O}(3)$ and $S\widehat{O}(2,1)$ and its geometric applications, Proc. Natl. Acad. Sci., India, Sect.A. Phys. Sci. 88-2: (2018) 267-273.
  • [4] Yüca G.: Kinematics Applications of Dual Transformations, manuscript submitted for publication, 2020.
  • [5] López R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space, arXiv:0810.3351v1 [math.DG] 2008.
  • [6] O’Neill B.: Semi-Riemannian Geometry, Pure and Applied Mathematics, 103,Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983).
  • [7] Yaylı Y., Çalışkan A., Uğurlu H.H.: The E. Study maps of circles on dual hyperbolic and Lorentzian unit spheres $H_{0}^{2}$ and $S_{1}^{2}$, Math. Proc. R. Ir. Acad. 102A-1: (2002) 37-47.
Yıl 2020, Cilt: 13 Sayı: 2, 52 - 61, 15.10.2020
https://doi.org/10.36890/iejg.683738

Öz

Kaynakça

  • [1] Tütüncü, E. E., : The Geometry of Motions in the Galile Spaces, Phd. Thesis, Ankara University Graduate School of Natural and AppliedSciences, 2009.
  • [2] Dohi R., Maeda Y., Mori M., Yoshida H.: A dual transformation between $S\widehat{O}(n+1)$ and $S\widehat{O}(n,1)$ and its geometric applications, Linear Algebra and its Applications 432: (2010), 770-776.
  • [3] Yüca G., Yaylı Y.: A dual transformation between $S\widehat{O}(3)$ and $S\widehat{O}(2,1)$ and its geometric applications, Proc. Natl. Acad. Sci., India, Sect.A. Phys. Sci. 88-2: (2018) 267-273.
  • [4] Yüca G.: Kinematics Applications of Dual Transformations, manuscript submitted for publication, 2020.
  • [5] López R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space, arXiv:0810.3351v1 [math.DG] 2008.
  • [6] O’Neill B.: Semi-Riemannian Geometry, Pure and Applied Mathematics, 103,Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1983).
  • [7] Yaylı Y., Çalışkan A., Uğurlu H.H.: The E. Study maps of circles on dual hyperbolic and Lorentzian unit spheres $H_{0}^{2}$ and $S_{1}^{2}$, Math. Proc. R. Ir. Acad. 102A-1: (2002) 37-47.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Gülsüm Yüca 0000-0002-2015-7350

Yusuf Yaylı Bu kişi benim 0000-0003-4398-3855

Yayımlanma Tarihi 15 Ekim 2020
Kabul Tarihi 24 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 2

Kaynak Göster

APA Yüca, G., & Yaylı, Y. (2020). Dual Transformations in Galilean Spaces. International Electronic Journal of Geometry, 13(2), 52-61. https://doi.org/10.36890/iejg.683738
AMA Yüca G, Yaylı Y. Dual Transformations in Galilean Spaces. Int. Electron. J. Geom. Ekim 2020;13(2):52-61. doi:10.36890/iejg.683738
Chicago Yüca, Gülsüm, ve Yusuf Yaylı. “Dual Transformations in Galilean Spaces”. International Electronic Journal of Geometry 13, sy. 2 (Ekim 2020): 52-61. https://doi.org/10.36890/iejg.683738.
EndNote Yüca G, Yaylı Y (01 Ekim 2020) Dual Transformations in Galilean Spaces. International Electronic Journal of Geometry 13 2 52–61.
IEEE G. Yüca ve Y. Yaylı, “Dual Transformations in Galilean Spaces”, Int. Electron. J. Geom., c. 13, sy. 2, ss. 52–61, 2020, doi: 10.36890/iejg.683738.
ISNAD Yüca, Gülsüm - Yaylı, Yusuf. “Dual Transformations in Galilean Spaces”. International Electronic Journal of Geometry 13/2 (Ekim 2020), 52-61. https://doi.org/10.36890/iejg.683738.
JAMA Yüca G, Yaylı Y. Dual Transformations in Galilean Spaces. Int. Electron. J. Geom. 2020;13:52–61.
MLA Yüca, Gülsüm ve Yusuf Yaylı. “Dual Transformations in Galilean Spaces”. International Electronic Journal of Geometry, c. 13, sy. 2, 2020, ss. 52-61, doi:10.36890/iejg.683738.
Vancouver Yüca G, Yaylı Y. Dual Transformations in Galilean Spaces. Int. Electron. J. Geom. 2020;13(2):52-61.