Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential

Yıl 2021, Cilt: 14 Sayı: 1, 157 - 166, 15.04.2021
https://doi.org/10.36890/iejg.713254

Öz

In this note, we characterize the $f$-harmonic maps and bi-$f$-harmonic maps with potential. We prove that every bi-$f$-harmonic map with potential from complete Riemannian manifold, satisfying some conditions is a $f$-harmonic map with potential. More, we study the case of conformal maps between equidimensional manifolds.

Teşekkür

The author would like to thank the referee for his helpful suggestions and his valuable comments which helped to improve the manuscript.

Kaynakça

  • [1] Lichnerowicz, A.: Applications harmoniques et variétés Kähleriennes. Rend. Sem. Mat. Fis. Milano. 39, 186–195 (1969).
  • [2] Cherif, A. M., Djaa, M.: On the bi-harmonic maps with potential. Arab J. Math. Sci. 24(1), 1–8 (2018).
  • [3] Ratto, A.: Harmonic maps with potential. Proceedings of theWorkshop on Differential Geometry and Topology (Palermo, 1996). Rend. Circ. Mat. Palermo. (2) Suppl. No. 49, 229–242 (1997).
  • [4] Zagane, A., Ouakass, S.: Some results and examples of the biharmonic maps with potential. Arab J. Math. Sci. 24(2), 182–198 (2018).
  • [5] Zegga, K., Cherif, A. M., Djaa, M.: On the f-biharmonic maps and submanifolds. Kyungpook Math. J. 55(1), 157–168 (2015).
  • [6] Ara, M. Geometry of F-harmonic maps. Kodai Math. J. 22(2), 243–263 (1999).
  • [7] Djaa, M., Cherif, A. M., Zegga, K., Ouakkas, S.: On the generalized of harmonic and bi-harmonic maps. Int. Electron. J. Geom. 5(1), 90–100 (2012).
  • [8] Cherif, A. M., Djaa, M., Zegga, K.: Stable f-harmonic maps on sphere. Commun. Korean Math. Soc. 30(4), 471–479 (2015).
  • [9] Course N.: f-harmonic maps, Thesis, University ofWarwick, Coventry, CV4 7AL, UK,2004.
  • [10] Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Research Notes in Mathematics, 87. Pitman (Advanced Publishing Program), Boston, MA, 1983.
  • [11] Chen, Q.: Harmonic maps with potential from complete manifolds. Chinese Sci. Bull. 43(21), 1780–1786 (1998).
  • [12] Jiang, R.: Harmonic maps with potential from R2 into S2. Asian J. Math. 20(4), 597–627 (2016).
  • [13] Ouakkas, S., Nasri, R., Djaa, M.: On the f-harmonic and f-biharmonic maps. JP J. Geom. Topol. 10(1), 11–27 (2010).
  • [14] Branding, V.: The heat flow for the full bosonic string. Ann. Global Anal. Geom. 50(4), 347–365 (2016).
Yıl 2021, Cilt: 14 Sayı: 1, 157 - 166, 15.04.2021
https://doi.org/10.36890/iejg.713254

Öz

In this note we characterize the f-harmonic maps and bi-f-harmonic maps with potential.We prove
that every bi-f-harmonic map with potential from complete Riemannian manifold, satisfying some
conditions is a f-harmonic map with potential.

Kaynakça

  • [1] Lichnerowicz, A.: Applications harmoniques et variétés Kähleriennes. Rend. Sem. Mat. Fis. Milano. 39, 186–195 (1969).
  • [2] Cherif, A. M., Djaa, M.: On the bi-harmonic maps with potential. Arab J. Math. Sci. 24(1), 1–8 (2018).
  • [3] Ratto, A.: Harmonic maps with potential. Proceedings of theWorkshop on Differential Geometry and Topology (Palermo, 1996). Rend. Circ. Mat. Palermo. (2) Suppl. No. 49, 229–242 (1997).
  • [4] Zagane, A., Ouakass, S.: Some results and examples of the biharmonic maps with potential. Arab J. Math. Sci. 24(2), 182–198 (2018).
  • [5] Zegga, K., Cherif, A. M., Djaa, M.: On the f-biharmonic maps and submanifolds. Kyungpook Math. J. 55(1), 157–168 (2015).
  • [6] Ara, M. Geometry of F-harmonic maps. Kodai Math. J. 22(2), 243–263 (1999).
  • [7] Djaa, M., Cherif, A. M., Zegga, K., Ouakkas, S.: On the generalized of harmonic and bi-harmonic maps. Int. Electron. J. Geom. 5(1), 90–100 (2012).
  • [8] Cherif, A. M., Djaa, M., Zegga, K.: Stable f-harmonic maps on sphere. Commun. Korean Math. Soc. 30(4), 471–479 (2015).
  • [9] Course N.: f-harmonic maps, Thesis, University ofWarwick, Coventry, CV4 7AL, UK,2004.
  • [10] Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Research Notes in Mathematics, 87. Pitman (Advanced Publishing Program), Boston, MA, 1983.
  • [11] Chen, Q.: Harmonic maps with potential from complete manifolds. Chinese Sci. Bull. 43(21), 1780–1786 (1998).
  • [12] Jiang, R.: Harmonic maps with potential from R2 into S2. Asian J. Math. 20(4), 597–627 (2016).
  • [13] Ouakkas, S., Nasri, R., Djaa, M.: On the f-harmonic and f-biharmonic maps. JP J. Geom. Topol. 10(1), 11–27 (2010).
  • [14] Branding, V.: The heat flow for the full bosonic string. Ann. Global Anal. Geom. 50(4), 347–365 (2016).
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Zegga Kaddour 0000-0002-2888-2119

Yayımlanma Tarihi 15 Nisan 2021
Kabul Tarihi 29 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 14 Sayı: 1

Kaynak Göster

APA Kaddour, Z. (2021). Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. International Electronic Journal of Geometry, 14(1), 157-166. https://doi.org/10.36890/iejg.713254
AMA Kaddour Z. Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. Int. Electron. J. Geom. Nisan 2021;14(1):157-166. doi:10.36890/iejg.713254
Chicago Kaddour, Zegga. “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps With Potential”. International Electronic Journal of Geometry 14, sy. 1 (Nisan 2021): 157-66. https://doi.org/10.36890/iejg.713254.
EndNote Kaddour Z (01 Nisan 2021) Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. International Electronic Journal of Geometry 14 1 157–166.
IEEE Z. Kaddour, “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential”, Int. Electron. J. Geom., c. 14, sy. 1, ss. 157–166, 2021, doi: 10.36890/iejg.713254.
ISNAD Kaddour, Zegga. “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps With Potential”. International Electronic Journal of Geometry 14/1 (Nisan 2021), 157-166. https://doi.org/10.36890/iejg.713254.
JAMA Kaddour Z. Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. Int. Electron. J. Geom. 2021;14:157–166.
MLA Kaddour, Zegga. “Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps With Potential”. International Electronic Journal of Geometry, c. 14, sy. 1, 2021, ss. 157-66, doi:10.36890/iejg.713254.
Vancouver Kaddour Z. Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential. Int. Electron. J. Geom. 2021;14(1):157-66.