Let $E^{3}$ be the 3-dimensional Euclidean space and $S$ be a set with at least two elements. The notions of an $S$-parametric figure and the motion of an $S$-parametric figure in $E^{3}$ are defined. Complete systems of invariants of an $S$-parametric figure in $E^{3}$ for the orthogonal group $O(3,R)$ , the special orthogonal group $SO(3,R)$, Euclidean group $MO(3,R)$, the special Euclidean group $MSO(3,R)$ and Galileo groups $Gal_{1}(3,R)$ , $Gal^{+}_{1}(3,R)$ are obtained.
[1] Aripov R. and Khadjiev D.:The complete system of global differential and integral invariants of a curve in Euclidean geometry, Izvestiya Vuzov, Ser. Mathematics, 542, 1-14 (2007).(Russian). (English translation) Aripov R. and Khadzhiev D., Russian Mathematics (Iz VUZ), 2007, Vol. 51, No. 7, pp.1-14.
[2] BergerM.:Geometry I, Springer-Verlag,Berlin,Heidelberg,1987.
[3] ElleryB.G.:Foundations of Euclidean and Non-Euclidean Geometry,HoltRinehartand WinstonINC,NewYork,1968.
[8] KhadjievD.,O ̋renI.andPeks ̧enO ̋.:Globalinvariantsofpathsandcurvesforthegroupofalllinearsimilaritiesinthetwo-dimensionalEuclidean space, International Journal of Geometric Methods in Modern Physics, 15, No. 6, (2018).
[9] Khadjiev D.:Ayupov Sh. and Beshimov G.:Complete systems of invariants of m-tuples for fundamental groups of the two-dimensional Euclidean space, Uzbek Mathematical Journal, 1,71-98 (2020,).
[1] Aripov R. and Khadjiev D.:The complete system of global differential and integral invariants of a curve in Euclidean geometry, Izvestiya Vuzov, Ser. Mathematics, 542, 1-14 (2007).(Russian). (English translation) Aripov R. and Khadzhiev D., Russian Mathematics (Iz VUZ), 2007, Vol. 51, No. 7, pp.1-14.
[2] BergerM.:Geometry I, Springer-Verlag,Berlin,Heidelberg,1987.
[3] ElleryB.G.:Foundations of Euclidean and Non-Euclidean Geometry,HoltRinehartand WinstonINC,NewYork,1968.
[8] KhadjievD.,O ̋renI.andPeks ̧enO ̋.:Globalinvariantsofpathsandcurvesforthegroupofalllinearsimilaritiesinthetwo-dimensionalEuclidean space, International Journal of Geometric Methods in Modern Physics, 15, No. 6, (2018).
[9] Khadjiev D.:Ayupov Sh. and Beshimov G.:Complete systems of invariants of m-tuples for fundamental groups of the two-dimensional Euclidean space, Uzbek Mathematical Journal, 1,71-98 (2020,).
Khadjiev, D., Ören, İ., & Beshimov, G. (2022). Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space. International Electronic Journal of Geometry, 15(2), 334-342. https://doi.org/10.36890/iejg.1091348
AMA
Khadjiev D, Ören İ, Beshimov G. Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space. Int. Electron. J. Geom. October 2022;15(2):334-342. doi:10.36890/iejg.1091348
Chicago
Khadjiev, Djavvat, İdris Ören, and Gayrat Beshimov. “Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space”. International Electronic Journal of Geometry 15, no. 2 (October 2022): 334-42. https://doi.org/10.36890/iejg.1091348.
EndNote
Khadjiev D, Ören İ, Beshimov G (October 1, 2022) Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space. International Electronic Journal of Geometry 15 2 334–342.
IEEE
D. Khadjiev, İ. Ören, and G. Beshimov, “Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space”, Int. Electron. J. Geom., vol. 15, no. 2, pp. 334–342, 2022, doi: 10.36890/iejg.1091348.
ISNAD
Khadjiev, Djavvat et al. “Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space”. International Electronic Journal of Geometry 15/2 (October 2022), 334-342. https://doi.org/10.36890/iejg.1091348.
JAMA
Khadjiev D, Ören İ, Beshimov G. Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space. Int. Electron. J. Geom. 2022;15:334–342.
MLA
Khadjiev, Djavvat et al. “Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space”. International Electronic Journal of Geometry, vol. 15, no. 2, 2022, pp. 334-42, doi:10.36890/iejg.1091348.
Vancouver
Khadjiev D, Ören İ, Beshimov G. Complete Systems of Galileo Invariants of a Motion of Parametric Figure in the Three Dimensional Euclidean Space. Int. Electron. J. Geom. 2022;15(2):334-42.