Research Article
BibTex RIS Cite
Year 2023, Volume: 16 Issue: 1, 215 - 224, 30.04.2023
https://doi.org/10.36890/iejg.1231759

Abstract

References

  • [1] Aledo, J. A., Espinar, J. M., Gálvez, J. A.: Complete surfaces of constant curvature in H2 × R and S2 × R. Calc. Var., 29, 347–363 (2007).
  • [2] Aledo, J. A., Lozano, V., A. Pastor, J. A.: Compact Surfaces with Constant Gaussian Curvature in Product Spaces. Mediterr. J. Math., 7, 263-270 (2010).
  • [3] Belarbi, L.: Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group. Ann. Math. Inform., 50, 5-17 (2019).
  • [4] Cui, Q., Mafra, A., Peñafiel, C.: Immersed hyperbolic and parabolic screw motion surfaces in the space P SL ]2(R, τ). Geom. Dedicata, 178, 297-322 (2015).
  • [5] Daniel, B.: Minimal isometric immersions into S2 × R and H2 × R. Indiana Univ. Math. J., 64, 1425-1445 (2015).
  • [6] Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in Sn × R and Hn × R. Note Mat., 29(1), 41-54 (2009).
  • [7] Espinar, J. M., Gálvez, J. A., Rosenberg, H.: Complete surfaces with positive extrinsic curvature in product spaces. Comment. Math. Helv., 84, 351-386 (2009).
  • [8] Hasanis, T., López, R.: Minimal Translation Surfaces in Euclidean Space. Results Math., 75, Article number: 2 (2020).
  • [9] Hauswirth, l., Rosenberg, H., Spruck, J.: On complete mean curvature H = 1/2 surfaces in H2 × R. Comm. Anal. Geom., 16(5), 989-1005 (2009).
  • [10] Lone, M. S., Karacan, M. K., Tuncer, Y., Es, H.: Translation surfaces in affine 3-space. Hacet. J. Math. Stat., 49, 1944-1954 (2020).
  • [11] López, R.: Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom., 52, 105-112 (2011).
  • [12] Meeks, W.H., Rosenberg, H.: The theory of minimal surfaces in M2 × R. Comment. Math. Helv., 80, 811-858 (2005).
  • [13] Montaldo, S., Onnis, I. I.: Invariant CMC surfaces in H2 × R. Glasg. Math. J., 46, 311-321 (2004).
  • [14] Nelli, B., Sa Earp, R., Santos, W., Toubiana, E.: Uniqueness of H-surfaces in H2 × R, |H| ≤ 1/2, with boundary one or two parallel horizontal circles. Ann. Global Anal. Geom., 33(4), 307-321 (2008).
  • [15] Nelli, B., Rosenberg, H.: Minimal surfaces in M2 × R. Bull. Braz. Math. Soc., New Series, 33(2), 263-292 (2002).
  • [16] Novais, R., Dos Santos, J. P.: Intrinsic and extrinsic geometry of hypersurfaces in Sn × R and Hn × R. J. Geom., 108, 1115-1127 (2017).
  • [17] Rosenberg, H.: Minimal surfaces in M2 × R. Illinois J. Math., 46, 1177-1195 (2002).
  • [18] Sa Earp, R.: Parabolic and hyperbolic screw motion surfaces in H2 × R. J. Aust. Math. Soc., 85, 113–143 (2008).
  • [19] Sa Earp, R., Toubiana, E.: Screw motion surfaces in H2 × R and S2 × R. Illinois J. Math., 49, 1323–1362 (2005).
  • [20] Souam, R., Toubiana, E. Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv., 84, 673-704 (2009)

Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$

Year 2023, Volume: 16 Issue: 1, 215 - 224, 30.04.2023
https://doi.org/10.36890/iejg.1231759

Abstract

In this work we study vertical graph surfaces invariant by parabolic screw motions with pitch $\ell >0$ and constant Gaussian curvature or constant extrinsic curvature in the product space $\mathbb H^2 \times \mathbb R$. In particular, we determine flat and extrinsically flat graph surfaces in $\mathbb H^2 \times \mathbb R$. We also obtain complete and non-complete vertical graph surfaces in $\mathbb H^2 \times \mathbb R$ with negative constant Gaussian curvature and zero extrinsic curvature.

References

  • [1] Aledo, J. A., Espinar, J. M., Gálvez, J. A.: Complete surfaces of constant curvature in H2 × R and S2 × R. Calc. Var., 29, 347–363 (2007).
  • [2] Aledo, J. A., Lozano, V., A. Pastor, J. A.: Compact Surfaces with Constant Gaussian Curvature in Product Spaces. Mediterr. J. Math., 7, 263-270 (2010).
  • [3] Belarbi, L.: Surfaces with constant extrinsically Gaussian curvature in the Heisenberg group. Ann. Math. Inform., 50, 5-17 (2019).
  • [4] Cui, Q., Mafra, A., Peñafiel, C.: Immersed hyperbolic and parabolic screw motion surfaces in the space P SL ]2(R, τ). Geom. Dedicata, 178, 297-322 (2015).
  • [5] Daniel, B.: Minimal isometric immersions into S2 × R and H2 × R. Indiana Univ. Math. J., 64, 1425-1445 (2015).
  • [6] Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in Sn × R and Hn × R. Note Mat., 29(1), 41-54 (2009).
  • [7] Espinar, J. M., Gálvez, J. A., Rosenberg, H.: Complete surfaces with positive extrinsic curvature in product spaces. Comment. Math. Helv., 84, 351-386 (2009).
  • [8] Hasanis, T., López, R.: Minimal Translation Surfaces in Euclidean Space. Results Math., 75, Article number: 2 (2020).
  • [9] Hauswirth, l., Rosenberg, H., Spruck, J.: On complete mean curvature H = 1/2 surfaces in H2 × R. Comm. Anal. Geom., 16(5), 989-1005 (2009).
  • [10] Lone, M. S., Karacan, M. K., Tuncer, Y., Es, H.: Translation surfaces in affine 3-space. Hacet. J. Math. Stat., 49, 1944-1954 (2020).
  • [11] López, R.: Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom., 52, 105-112 (2011).
  • [12] Meeks, W.H., Rosenberg, H.: The theory of minimal surfaces in M2 × R. Comment. Math. Helv., 80, 811-858 (2005).
  • [13] Montaldo, S., Onnis, I. I.: Invariant CMC surfaces in H2 × R. Glasg. Math. J., 46, 311-321 (2004).
  • [14] Nelli, B., Sa Earp, R., Santos, W., Toubiana, E.: Uniqueness of H-surfaces in H2 × R, |H| ≤ 1/2, with boundary one or two parallel horizontal circles. Ann. Global Anal. Geom., 33(4), 307-321 (2008).
  • [15] Nelli, B., Rosenberg, H.: Minimal surfaces in M2 × R. Bull. Braz. Math. Soc., New Series, 33(2), 263-292 (2002).
  • [16] Novais, R., Dos Santos, J. P.: Intrinsic and extrinsic geometry of hypersurfaces in Sn × R and Hn × R. J. Geom., 108, 1115-1127 (2017).
  • [17] Rosenberg, H.: Minimal surfaces in M2 × R. Illinois J. Math., 46, 1177-1195 (2002).
  • [18] Sa Earp, R.: Parabolic and hyperbolic screw motion surfaces in H2 × R. J. Aust. Math. Soc., 85, 113–143 (2008).
  • [19] Sa Earp, R., Toubiana, E.: Screw motion surfaces in H2 × R and S2 × R. Illinois J. Math., 49, 1323–1362 (2005).
  • [20] Souam, R., Toubiana, E. Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv., 84, 673-704 (2009)
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Uğur Dursun 0000-0002-5225-186X

Publication Date April 30, 2023
Acceptance Date April 2, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Dursun, U. (2023). Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. International Electronic Journal of Geometry, 16(1), 215-224. https://doi.org/10.36890/iejg.1231759
AMA Dursun U. Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. Int. Electron. J. Geom. April 2023;16(1):215-224. doi:10.36890/iejg.1231759
Chicago Dursun, Uğur. “Graph Surfaces Invariant by Parabolic Screw Motions With Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 215-24. https://doi.org/10.36890/iejg.1231759.
EndNote Dursun U (April 1, 2023) Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. International Electronic Journal of Geometry 16 1 215–224.
IEEE U. Dursun, “Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 215–224, 2023, doi: 10.36890/iejg.1231759.
ISNAD Dursun, Uğur. “Graph Surfaces Invariant by Parabolic Screw Motions With Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”. International Electronic Journal of Geometry 16/1 (April 2023), 215-224. https://doi.org/10.36890/iejg.1231759.
JAMA Dursun U. Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. Int. Electron. J. Geom. 2023;16:215–224.
MLA Dursun, Uğur. “Graph Surfaces Invariant by Parabolic Screw Motions With Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 215-24, doi:10.36890/iejg.1231759.
Vancouver Dursun U. Graph Surfaces Invariant by Parabolic screw Motions with Constant Curvature in $ \: \mathbb H^2 \times \mathbb R$. Int. Electron. J. Geom. 2023;16(1):215-24.