Research Article
BibTex RIS Cite
Year 2023, Volume: 16 Issue: 1, 160 - 170, 30.04.2023
https://doi.org/10.36890/iejg.1246589

Abstract

References

  • [1] Shikin, Ye. V. : Some questions of differential geometry in large. Mir, Moscow (1996).
  • [2] Aminov, Yu. A.: Problems of embeddings: geometric and topological aspects. Problems of geometry, vol. 13, 119-156 (1982). https://doi.org/10.1007/BF01084675
  • [3] Borisenko, A. A.: The exterior geometry is strongly parabolic of multidimensional submanifolds. Uspekhi mat. nauk, vol. 52, 3-52 (1997). https://doi.org/10.1070/RM1997v052n06ABEH002154
  • [4] Reshetnyak, Yu. G.: Two-dimensional manifolds of bounded curvature. Results of science and technology, geometry, vol. 70, 5-189 (1989). https: //doi.org/10.1007/978-3-662-02897-1_1
  • [5] Aleksandrov, V. A.: On the isometricity of polyhedral domains whose boundaries are locally isometric in relative metrics. Sib. Mat. journal, vol. 33, 3-9 (1992). https://doi.org/10.1007/BF00971088
  • [6] Alexandrov, A. D.: Convex polyhedra. Springer-Verlag, Berlin Heidelberg (2005).
  • [7] Olovyanishnikov, S. P.: Generalization of the Cauchy theorem on convex polyhedra. Matem. sbornik, vol. 18, 441-446 (1946). http://mi.mathnet.ru/rus/msb/v60/i3/p441
  • [8] Senkin, Ye. P.: Bending of convex surfaces. Problems of geometry, vol. 10, 193-222 (1978). https://doi.org/10.1007/BF01095474
  • [9] Pogorelov, A. V.: External geometry of convex surfaces. Nauka, Moscow (1969).
  • [10] Milka, A. D.: Space-like convex surfaces in pseudo-Euclidean spaces. Some questions of dif. geom. in large, 97-150 (1996). https://scholar.google.com/scholar?cluster=9344250095951017068&hl=en&oi=scholarr
  • [11] Gray, A.: Modern Differential Geometry of Curves and Surface. The American Mathematical Monthly, vol. 102, 937-943 (1995). https://doi.org/10.1080/00029890.1995.12004690
  • [12] Burago, Yu. D., Zalgaller V. A.: Implementation of unfoldings in the form of polyhedra. Bulletin of LSU, vol. 7, 66-80 (1960). https://doi.org/10.1080/00029890.1995.12004690
  • [13] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential geometry of special mappings. Palacký University Olomouc, Czech (2019). https: //doi.org/10.5507/prf.19.24455365
  • [14] Sharipov, A. S., Topvoldiyev, F. F.: On Invariants of Surfaces with Isometric on Sections. Mathematics and Statistics vol. 10(3), 523-528 (2022). https: //doi.org/10.13189/ms.2022.100307
  • [15] Sharipov, A. S.: Isometry groups of foliated manifolds. Itogi nauki i texniki, Ser. Sovrem. mat. i yeye pril. Tem. obzor, vol.197, 117-123 (2021). https://doi.org/10.36535/0233-6723-2021-197-117-123
  • [16] Narmanov, A. Ya., Sharipov A. S.: O gruppe diffeomorfizmov sloyenix mnogoobraziy. Itogi nauki i texniki. Ser. Sovrem. mat. i yeye pril. Tem. Obzor, vol. 181, pp. 74-83 (2020). https://doi.org/10.36535/0233-6723-2020-181-74-83
  • [17] Sharipov, A. S., Topvoldiyev, F. F.: On One Invariant Of Polyhedra Isometric On Sections. International Conference on Modern Problems of Applied Mathematics and Information Technology, Fergana, Uzbekistan, November 15, 2021, AIP conference proceedings, 225-229 (2022). https://aip.scitation.org/apc/info/forthcoming
  • [18] Muhittin, E. A., Mihriban, A. K., Alper O.Ö.: Constant curvature translation surfaces in Galilean 3-space. International Electronic Journal of Geometry vol. 12(1), 9-19 (2019). https://doi.org/10.36890/iejg.545741
  • [19] Mutlu, A., Salim, Y., Nuri, K.: One-parameter planar motion on the Galilean plane. International Electronic Journal of Geometry vol. 6(1), 79-88 (2013). https://dergipark.org.tr/en/pub/iejg/issue/47372/597633
  • [20] Artykbaev, A., Nurbayev, R.: The Indicatrix of the Surface in Four-Dimensional Galilean Space. Mathematics and Statistics, vol.8 (3), 306-310 (2020). http://dx.doi.org/10.13189/ms.2020.080309
  • [21] Alexandrov, A. D.: Intrinsic Geometry of Convex Surfaces. Taylor and Francis Ltd, London (2018).

Existence and Uniqueness of Polyhedra with Given Values of the Conditional Curvature

Year 2023, Volume: 16 Issue: 1, 160 - 170, 30.04.2023
https://doi.org/10.36890/iejg.1246589

Abstract

The theory of polyhedra and the geometric methods associated with it are interesting not only in their own right but also have a wide outlet in the general theory of surfaces. Certainly, it is only sometimes possible to obtain the corresponding theorem on surfaces from the theorem on polyhedra by passing to the limit. Still, the theorems on polyhedra give directions for searching for the related theorems on surfaces. In the case of polyhedra, the elementary-geometric basis of more general results is revealed. In the present paper, we study polyhedra of a particular class, i.e., without edges and reference planes perpendicular to a given direction. This work is a logical continuation of the author’s work, in which an invariant of convex polyhedra isometric on sections was found. The concept of isometry of surfaces and the concept of isometry on sections of surfaces differ from each other. Examples of isometric surfaces that are not isometric on sections and examples of non-isometric surfaces that are isometric on sections. However, they have non-empty intersections, i.e., some surfaces are both isometric and isometric on sections. In this paper, we prove the positive definiteness of the found invariant.
Further, conditional external curvature is introduced for “basic” sets, open faces, edges, and vertices. It is proved that the conditional curvature of the polyhedral angle considered is monotonicity and positive definiteness. At the end of the article, the problem of the existence and uniqueness of convex polyhedra with given values of conditional curvatures at the vertices is solved.

References

  • [1] Shikin, Ye. V. : Some questions of differential geometry in large. Mir, Moscow (1996).
  • [2] Aminov, Yu. A.: Problems of embeddings: geometric and topological aspects. Problems of geometry, vol. 13, 119-156 (1982). https://doi.org/10.1007/BF01084675
  • [3] Borisenko, A. A.: The exterior geometry is strongly parabolic of multidimensional submanifolds. Uspekhi mat. nauk, vol. 52, 3-52 (1997). https://doi.org/10.1070/RM1997v052n06ABEH002154
  • [4] Reshetnyak, Yu. G.: Two-dimensional manifolds of bounded curvature. Results of science and technology, geometry, vol. 70, 5-189 (1989). https: //doi.org/10.1007/978-3-662-02897-1_1
  • [5] Aleksandrov, V. A.: On the isometricity of polyhedral domains whose boundaries are locally isometric in relative metrics. Sib. Mat. journal, vol. 33, 3-9 (1992). https://doi.org/10.1007/BF00971088
  • [6] Alexandrov, A. D.: Convex polyhedra. Springer-Verlag, Berlin Heidelberg (2005).
  • [7] Olovyanishnikov, S. P.: Generalization of the Cauchy theorem on convex polyhedra. Matem. sbornik, vol. 18, 441-446 (1946). http://mi.mathnet.ru/rus/msb/v60/i3/p441
  • [8] Senkin, Ye. P.: Bending of convex surfaces. Problems of geometry, vol. 10, 193-222 (1978). https://doi.org/10.1007/BF01095474
  • [9] Pogorelov, A. V.: External geometry of convex surfaces. Nauka, Moscow (1969).
  • [10] Milka, A. D.: Space-like convex surfaces in pseudo-Euclidean spaces. Some questions of dif. geom. in large, 97-150 (1996). https://scholar.google.com/scholar?cluster=9344250095951017068&hl=en&oi=scholarr
  • [11] Gray, A.: Modern Differential Geometry of Curves and Surface. The American Mathematical Monthly, vol. 102, 937-943 (1995). https://doi.org/10.1080/00029890.1995.12004690
  • [12] Burago, Yu. D., Zalgaller V. A.: Implementation of unfoldings in the form of polyhedra. Bulletin of LSU, vol. 7, 66-80 (1960). https://doi.org/10.1080/00029890.1995.12004690
  • [13] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential geometry of special mappings. Palacký University Olomouc, Czech (2019). https: //doi.org/10.5507/prf.19.24455365
  • [14] Sharipov, A. S., Topvoldiyev, F. F.: On Invariants of Surfaces with Isometric on Sections. Mathematics and Statistics vol. 10(3), 523-528 (2022). https: //doi.org/10.13189/ms.2022.100307
  • [15] Sharipov, A. S.: Isometry groups of foliated manifolds. Itogi nauki i texniki, Ser. Sovrem. mat. i yeye pril. Tem. obzor, vol.197, 117-123 (2021). https://doi.org/10.36535/0233-6723-2021-197-117-123
  • [16] Narmanov, A. Ya., Sharipov A. S.: O gruppe diffeomorfizmov sloyenix mnogoobraziy. Itogi nauki i texniki. Ser. Sovrem. mat. i yeye pril. Tem. Obzor, vol. 181, pp. 74-83 (2020). https://doi.org/10.36535/0233-6723-2020-181-74-83
  • [17] Sharipov, A. S., Topvoldiyev, F. F.: On One Invariant Of Polyhedra Isometric On Sections. International Conference on Modern Problems of Applied Mathematics and Information Technology, Fergana, Uzbekistan, November 15, 2021, AIP conference proceedings, 225-229 (2022). https://aip.scitation.org/apc/info/forthcoming
  • [18] Muhittin, E. A., Mihriban, A. K., Alper O.Ö.: Constant curvature translation surfaces in Galilean 3-space. International Electronic Journal of Geometry vol. 12(1), 9-19 (2019). https://doi.org/10.36890/iejg.545741
  • [19] Mutlu, A., Salim, Y., Nuri, K.: One-parameter planar motion on the Galilean plane. International Electronic Journal of Geometry vol. 6(1), 79-88 (2013). https://dergipark.org.tr/en/pub/iejg/issue/47372/597633
  • [20] Artykbaev, A., Nurbayev, R.: The Indicatrix of the Surface in Four-Dimensional Galilean Space. Mathematics and Statistics, vol.8 (3), 306-310 (2020). http://dx.doi.org/10.13189/ms.2020.080309
  • [21] Alexandrov, A. D.: Intrinsic Geometry of Convex Surfaces. Taylor and Francis Ltd, London (2018).
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Anvarjon Sharipov 0000-0002-7019-4694

Mukhamedali Keunimjaev 0000-0002-8003-6366

Publication Date April 30, 2023
Acceptance Date April 14, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Sharipov, A., & Keunimjaev, M. (2023). Existence and Uniqueness of Polyhedra with Given Values of the Conditional Curvature. International Electronic Journal of Geometry, 16(1), 160-170. https://doi.org/10.36890/iejg.1246589
AMA Sharipov A, Keunimjaev M. Existence and Uniqueness of Polyhedra with Given Values of the Conditional Curvature. Int. Electron. J. Geom. April 2023;16(1):160-170. doi:10.36890/iejg.1246589
Chicago Sharipov, Anvarjon, and Mukhamedali Keunimjaev. “Existence and Uniqueness of Polyhedra With Given Values of the Conditional Curvature”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 160-70. https://doi.org/10.36890/iejg.1246589.
EndNote Sharipov A, Keunimjaev M (April 1, 2023) Existence and Uniqueness of Polyhedra with Given Values of the Conditional Curvature. International Electronic Journal of Geometry 16 1 160–170.
IEEE A. Sharipov and M. Keunimjaev, “Existence and Uniqueness of Polyhedra with Given Values of the Conditional Curvature”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 160–170, 2023, doi: 10.36890/iejg.1246589.
ISNAD Sharipov, Anvarjon - Keunimjaev, Mukhamedali. “Existence and Uniqueness of Polyhedra With Given Values of the Conditional Curvature”. International Electronic Journal of Geometry 16/1 (April 2023), 160-170. https://doi.org/10.36890/iejg.1246589.
JAMA Sharipov A, Keunimjaev M. Existence and Uniqueness of Polyhedra with Given Values of the Conditional Curvature. Int. Electron. J. Geom. 2023;16:160–170.
MLA Sharipov, Anvarjon and Mukhamedali Keunimjaev. “Existence and Uniqueness of Polyhedra With Given Values of the Conditional Curvature”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 160-7, doi:10.36890/iejg.1246589.
Vancouver Sharipov A, Keunimjaev M. Existence and Uniqueness of Polyhedra with Given Values of the Conditional Curvature. Int. Electron. J. Geom. 2023;16(1):160-7.