On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds
Year 2023,
Volume: 16 Issue: 1, 254 - 265, 30.04.2023
Adara M. Blaga
,
Dan Radu Latcu
Abstract
We establish some properties of the $k$-slant and pointwise $k$-slant submanifolds of an almost contact metric manifold with a special view towards the integrability of the component distributions. We prove some results for totally geodesic pointwise $k$-slant submanifolds. Furthermore, we obtain some nonexistence results for pointwise $k$-slant submanifolds in the almost contact metric setting.
References
- [1] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Semi-Slant Submanifolds of a Sasakian Manifold. Geom. Dedicata. 78, 183–199
(1999). https://doi.org/10.1023/A:1005241320631
- [2] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven (1990).
- [3] Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990). https://doi.org/10.1017/S0004972700017925
- [4] Chen, B.-Y., Garay, O.J.: Pointwise slant submanifolds in almost Hermitian manifolds. Turkish J. Math. 36, 630–640 (2012).
https://doi.org/10.3906/mat-1101-34
- [5] De, U.C., Sarkar, A.: On pseudo-slant submanifolds of trans-Sasakian manifolds. Proceedings of the Estonian Academy of Sciences. 60(1), 1–11
(2011). https://doi.org/10.3176/proc.2011.1.01
- [6] Etayo, F.: On quasi-slant submanifolds of an almost Hermitian manifold. Publ. Math. Debrecen. 53(1-2), 217–223 (1998).
- [7] Laţcu, A.C., La¸tcu, D.R.: Differentiability of the slant function of a general pointwise slant distribution. J. Geom. 113, 31 (2022).
https://doi.org/10.1007/s00022-022-00645-3
- [8] Laţcu, D.R.: k-slant distributions. (2022). https://doi.org/10.48550/arXiv.2208.11214
- [9] Marrero, J.C.: The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 162, 77–86 (1992). https://doi.org/10.1007/BF01760000
- [10] Oubina, J.A.: New classes of almost contact metric structures. Publ. Math. Debrecen. 32(3-4), 187–193 (1985).
- [11] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. ¸Stiin¸t. Univ. "Al. I. Cuza" Ia¸si. 40, 55–61 (1994).
- [12] Perktaş, S.-Y., Blaga, A.M., Kiliç, E.: Almost bi-slant submanifolds of an almost contact manifold. J. Geom. 112, 2 (2021).
https://doi.org/10.1007/s00022-020-00564-1
- [13] Sasaki, S.: On differentiable manifolds with certain structures which are closely related to almost contact structure I. Tohoku Math. J. 12(2), 459–476
(1960). https://doi.org/10.2748/tmj/1178244407
- [14]Şahin, B.: Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 95(3), 207–226 (2009). DOI 10.4064/ap95-3-2
Year 2023,
Volume: 16 Issue: 1, 254 - 265, 30.04.2023
Adara M. Blaga
,
Dan Radu Latcu
References
- [1] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Semi-Slant Submanifolds of a Sasakian Manifold. Geom. Dedicata. 78, 183–199
(1999). https://doi.org/10.1023/A:1005241320631
- [2] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven (1990).
- [3] Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990). https://doi.org/10.1017/S0004972700017925
- [4] Chen, B.-Y., Garay, O.J.: Pointwise slant submanifolds in almost Hermitian manifolds. Turkish J. Math. 36, 630–640 (2012).
https://doi.org/10.3906/mat-1101-34
- [5] De, U.C., Sarkar, A.: On pseudo-slant submanifolds of trans-Sasakian manifolds. Proceedings of the Estonian Academy of Sciences. 60(1), 1–11
(2011). https://doi.org/10.3176/proc.2011.1.01
- [6] Etayo, F.: On quasi-slant submanifolds of an almost Hermitian manifold. Publ. Math. Debrecen. 53(1-2), 217–223 (1998).
- [7] Laţcu, A.C., La¸tcu, D.R.: Differentiability of the slant function of a general pointwise slant distribution. J. Geom. 113, 31 (2022).
https://doi.org/10.1007/s00022-022-00645-3
- [8] Laţcu, D.R.: k-slant distributions. (2022). https://doi.org/10.48550/arXiv.2208.11214
- [9] Marrero, J.C.: The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 162, 77–86 (1992). https://doi.org/10.1007/BF01760000
- [10] Oubina, J.A.: New classes of almost contact metric structures. Publ. Math. Debrecen. 32(3-4), 187–193 (1985).
- [11] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. ¸Stiin¸t. Univ. "Al. I. Cuza" Ia¸si. 40, 55–61 (1994).
- [12] Perktaş, S.-Y., Blaga, A.M., Kiliç, E.: Almost bi-slant submanifolds of an almost contact manifold. J. Geom. 112, 2 (2021).
https://doi.org/10.1007/s00022-020-00564-1
- [13] Sasaki, S.: On differentiable manifolds with certain structures which are closely related to almost contact structure I. Tohoku Math. J. 12(2), 459–476
(1960). https://doi.org/10.2748/tmj/1178244407
- [14]Şahin, B.: Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 95(3), 207–226 (2009). DOI 10.4064/ap95-3-2