Diğer
BibTex RIS Kaynak Göster

Classical Notions and Problems in Thurston Geometries

Yıl 2023, Cilt: 16 Sayı: 2, 608 - 643, 29.10.2023
https://doi.org/10.36890/iejg.1221802

Öz

Of the Thurston geometries, those with constant curvature geometries (Euclidean $ E^3$, hyperbolic $ H^3$, spherical $ S^3$) have been extensively studied, but the other five geometries, $ H^2\times R$, $ S^2\times R$, $Nil$, $\widetilde{SL_2 R}$, $Sol$ have been thoroughly studied only from a differential geometry and topological point of view. However, classical concepts highlighting the beauty and underlying structure of these geometries -- such as geodesic curves and spheres, the lattices, the geodesic triangles and their surfaces, their interior sum of angles and similar statements to those known in constant curvature geometries -- can be formulated. These have not been the focus of attention. In this survey, we summarize our results on this topic and pose additional open questions.

Kaynakça

  • [1] Bezdek, K.: Sphere Packings Revisited. Eur. J. Combin. 27/6, 864–883 (2006).
  • [2] Böröczky, K.: Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hungar. 32, 243-261 (1978).
  • [3] Brodaczewska, K.: Elementargeometrie in Nil. Dissertation (Dr. rer. nat.) Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden (2014).
  • [4] Bölcskei, A., Szilágyi, B.: Frenet Formulas and Geodesics in Sol Geometry. Beitr. Algebra Geom. 48/2, 411-421 (2007).
  • [5] Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge Studies in Advances Mathematics, Cambridge (2006).
  • [6] Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. American Mathematical Society. (2006).
  • [7] Csima, G., Szirmai, J.: Interior angle sum of translation and geodesic triangles in^SL2R space. Filomat. 32/14, 5023–5036 (2018).
  • [8] Cavichioli, A., Molnár, E., Spaggiari, F., Szirmai, J.: Some tetrahedron manifolds with Sol geometry. J. Geometry. 105/3, 601-614 (2014).
  • [9] Divjak, B., Erjavec, Z., Szabolcs, B., Szilágyi, B.: Geodesics and geodesic spheres in^SL2R geometry. Math. Commun. 14/2, 413-424 (2009).
  • [10] Erjavec, Z., Horvat, D.: Biharmonic curves in^SL2R space. Math. Commun. 19 (2), 291-299 (2014).
  • [11] Erjavec, Z.: Minimal surfaces in^SL2R space. Glas. Mat. Ser. III. 50, 207-221 (2015).
  • [12] Erjavec, Z.: On Killing magnetic curves in^SL2R geometry. Rep. Math. Phys. 84 (3), 333-350 (2019).
  • [13] Erjavec, Z.: On a certain class of Weingarten surfaces in Sol space. Int. J. Appl. Math. 28 (5), 507-514 (2015).
  • [14] Erjavec, Z., Inoguchi, J.: On magnetic curves in almost cosymplectic Sol space. Results Math. 75:113, 16 pg (2020).
  • [15] Erjavec, Z., Inoguchi, J.: Killing magnetic curves in Sol space. Math. Phys. Anal. Geom., 21:15, 15 pg (2018).
  • [16] Eper, M., Szirmai, J.: Coverings with congruent and non-congruent hyperballs generated by doubly truncated Coxeter orthoschemes. Contributions to Discrete Mathematics. 17 No.2, 23-40 (2022), https://doi.org/10.11575/cdm.v17i2.
  • [17] Farkas, Z. J.: The classification of S2×R space groups. Beitr. Algebra Geom. 42, 235-250 (2001).
  • [18] Fejes Tóth, G., Kuperberg, W.: Packing and Covering with Convex Sets, Handbook of Convex Geometry Volume B, eds. Gruber, P.M., Willis J.M., pp. 799-860, North-Holland, (1983).
  • [19] Fejes Tóth, G., Kuperberg, G., Kuperberg, W.: Highly Saturated Packings and Reduced Coverings. Monatsh. Math. 125/2, 127-145 (1998).
  • [20] Fejes Tóth, L.: Regular Figures, Macmillan New York, 1964.
  • [21] Hales, T. C.: Historical Overview of the Kepler Conjecture. Discrete and Computational Geometry, 35, 5-20 (2006).
  • [22] Inoguchi, J.: Minimal translation surfaces in the Heisenberg group Nil3. Geom. Dedicata 161/1, 221-231 (2012).
  • [23] Kobayashi, S., Nomizu, K.: Fundation of differential geometry, I. Interscience, Wiley, New York (1963).
  • [24] Kozma, R. T., Szirmai, J.: Optimally dense packings for fully asymptotic Coxeter tilings by horoballs of different types. Monatsh. Math. 168/1, 27-47 (2012).
  • [25] Kozma, R. T., Szirmai, J.: New Lower Bound for the Optimal Ball Packing Density of Hyperbolic 4-space. Discrete Comput. Geom. 53/1, 182-198 (2015), https://doi.org/10.1007/s00454-014-9634-1.
  • [26] Kozma, R. T., Szirmai, J.: New horoball packing density lower bound in hyperbolic 5-space. Geom. Dedicata. 206/1, 1-25 (2020), https://doi.org/10.1007/s10711-019-00473-x.
  • [27] Kozma, R. T., Szirmai, J.: Horoball Packing Density Lower Bounds in Higher Dimensional Hyperbolic n-space for 6 ≤ n ≤ 9. Geom. Dedicata. (2023), https://doi.org/10.1007/s10711-023-00779-x.
  • [28] Kurusa, Á.: Ceva’s and Menelaus’ theorems in projective-metric spaces. J. Geom. 110/2, (2019), https://doi.org/10.1007/s00022-019-0495-x.
  • [29] Manzano, M.J., Torralbo, F.: New Examples of Constant Mean Curvature Surfaces in SXR and HXR. Michigan Math. J. 63, 701-723 (2014).
  • [30] Molnár, E.: The projective interpretation of the eight 3-dimensional homogeneous geometries. Beitr. Algebra Geom. 38 No. 2, 261-288 (1977).
  • [31] : Molnár, E., Szirmai, J.: Symmetries in the 8 homogeneous 3-geometries. Symmetry Cult. Sci. 21/1-3, 87-117 (2010).
  • [32] Molnár, E., Szilágyi, B.: Translation curves and their spheres in homogeneous geometries. Publ. Math. Debrecen. 78/2, 327-346 (2010).
  • [33] Molnár, E.: On projective models of Thurston geometries, some relevant notes on Nil orbifolds and manifolds. Sib. Electron. Math. Izv. 7, 491-498 (2010), http://mi.mathnet.ru/semr267.
  • [34] Molnár, E., Szirmai, J.: On Nil crystallography. Symmetry Cult. Sci. 17/1-2, 55-74 (2006).
  • [35] Molnár, E., Szirmai, J.: Top dense hyperbolic ball packings and coverings for complete Coxeter orthoscheme groups. Publications de l’Institut Mathématique. 103(117), 129-146 (2018), https://doi.org/10.2298/PIM1817129M.
  • [36] Molnár, E., Szirmai, J.: Classification of Sol lattices. Geom. Dedicata. 161/1, 251-275 (2012).
  • [37] Molnár, E., Szirmai, J., Vesnin, A.: Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links. J. Geom. 95, 91-133 (2009).
  • [38] Molnár, E., Szirmai, J.: Volumes and geodesic ball packings to the regular prism tilings in^SL2R space. Publ. Math. Debrecen. 84(1-2), 189-203 (2014).
  • [39] Molnár, E., Szirmai, J., Vesnin, A.: Packings by translation balls in^SL2R. J. Geom. 105(2), 287-306 (2014).
  • [40] Molnár E., Szirmai J., Vesnin A.: Geodesic and Translation Ball Packings Generated by Prismatic Tesselations of the Universal Cover of ^SL2R. Results in Math. 71), 623-642 (2017).
  • [41] Morabito, F., Rodriguez, M. M.: Classification of rotational special Weingarten surfaces of minimal type in S2×R and H2×R. Mathematische Zeitschrift. 273 (1-2), 379-399 (2013), https://doi.org/10.1007/s00209-012-1010-3.
  • [42] Németh, L.: Pascal pyramid in the space H2×R. Mathematical Communications. 22, 211-225 (2017). [43] Novello, T., da Silva, V., Velhoa, L.: Visualization of Nil, Sol, and^SL2R geometries. Computers and Graphics. 91, 219-231 (2020).
  • [44] Ohshika K., Papadopoulos, A. (editors): In the Tradition of Thurston Geometry and Topology, Springer International Publishing. (2020), ISBN:978-3-030-55927-4.
  • [45] Pallagi, J., Schultz, B., Szirmai, J.: Visualization of geodesic curves, spheres and equidistant surfaces in S2×R space. KoG. 14, 35-40 (2010).
  • [46] Pallagi, J., Schultz, B., Szirmai, J.: Equidistant surfaces in Nil space. Stud. Univ. Zilina, Math. Ser. 25, 31-40 (2011).
  • [47] Pallagi, J., Schultz, B., Szirmai, J.: Equidistant surfaces in H2×R space. KoG. 15, 3-6 (2011).
  • [48] Pallagi, J., Szirmai, J.: Visualization of the Dirichlet-Voronoi cells in S2×R space. Pollack Periodica. 7 Supp 1, 95–104 (2012), https://doi.org/10.1556/Pollack.7.2012.S.9.
  • [49] Papadopoulos, A., Su, W.: On hyperbolic analogues of some classical theorems in spherical geometry. hal-01064449 (2014).
  • [50] Rodriguez, M. M.: Minimal surfaces with limit ends in H2×R. Journal für die reine und angewandte Mathematik (Crelle’s Journal). 685, 123-141 (2013), https://doi.org/10.1515/crelle-2012-0010.
  • [51] Schultz B., Molnár E.: Geodesic lines and spheres, densest(?) geodesic ball packing in the new linear model of Nil geometry. Proceedings of the Czech-Slovak Conference on Geometry and Graphics. 177-186 (2015), ISBN 978-80-227-4479-9.
  • [52] Schultz, B., Szirmai, J.: On parallelohedra of Nil-space. Pollack Periodica. 7. Supp 1, 129-136 (2012).
  • [53] Schultz, B., Szirmai, J.: Geodesic ball packings generated by regular prism tilings in Nil geometry Miskolc Math. Notes. 23/1, 429-442 (2012), https://doi.org/10.18514/MMN.2022.2959.
  • [54] Scott, P.: The geometries of 3-manifolds. Bull. London Math. Soc. 15, 401-487 (1983).
  • [55] Szirmai, J.: The densest geodesic ball packing by a type of Nil lattices. Beitr. Algebra Geom. 48(2), 383-398 (2007).
  • [56] Szirmai, J.: A candidate to the densest packing with equal balls in the Thurston geometries. Beitr. Algebra Geom. 55(2), 441-452 (2014).
  • [57] Szirmai, J.: Lattice-like translation ball packings in Nil space. Publ. Math. Debrecen. 80(3-4), 427-440 (2012).
  • [58] Szirmai, J.: Nil geodesic triangles and their interior angle sums. Bull. Braz. Math. Soc. (N.S.) 49, 761-773 (2018).
  • [59] Szirmai, J.: Non-periodic geodesic ball packings to infinite regular prism tilings in SL(2,R) space. Rocky Mountain Journal of Mathematics. 46/3, 1055-1070 (2016).
  • [60] Szirmai, J.: Bisector surfaces and circumscribed spheres of tetrahedra derived by translation curves in Sol geometry. New York J. Math. 25, 107-122 (2019).
  • [61] Szirmai, J.: Simply transitive geodesic ball packings to S2 × R space groups generated by glide reflections. Ann. Mat. Pur. Appl., 193/4, 1201-1211 (2014), https://doi.org/10.1007/s10231-013-0324-z.
  • [62] Szirmai, J.: Geodesic ball packings in S2×R space for generalized Coxeter space groups. Beitr. Algebra Geom. 52, 413 - 430 (2011).
  • [63] Szirmai, J.: Geodesic ball packings in H2×R space for generalized Coxeter space groups. Math. Commun. 17/1, 151-170 (2012).
  • [64] Szirmai, J:. The densest translation ball packing by fundamental lattices in Sol space. Beitr. Algebra Geom. 51(2), 353-373 (2010).
  • [65] Szirmai, J.: Interior angle sums of geodesic triangles in S2×R and H2×R geometries. Bul. Acad. de Stiinte Republicii Mold. Mat. 93(2), 44-61 (2020).
  • [66] Szirmai, J.: Apollonius surfaces, circumscribed spheres of tetrahedra, Menelaus’ and Ceva’s theorems in S2×R and H2×R geometries. Q. J. Math. 73, 477-494 (2022), https://doi.org/10.1093/qmath/haab038.
  • [67] Szirmai, J.: On Menelaus’ and Ceva’s theorem in Nil geometry. Acta Univ. Sapientiae Math. (2023), arXiv: 2110.08877.
  • [68] Szirmai, J.: Regular prism tilings in^SL2R space Aequat. Math. 88 (1-2), 67-79 (2014), https://doi.org/10.1007/s00010-013-0221-y
  • [69] Szirmai, J.: Hyperball packings in hyperbolic 3-space. Mat. Vesn., 70/3, 211-221 (2018).
  • [70] Szirmai, J.: Packings with horo- and hyperballs generated by simple frustum orthoschemes. Acta Math. Hungar. 152/2, 365-382 (2017), https://doi.org/10.1007/s10474-017-0728-0.
  • [71] Szirmai, J.: Density upper bound of congruent and non-congruent hyperball packings generated by truncated regular simplex tilings. Rendiconti del Circolo Matematico di Palermo Series 2, 67, 307-322 (2018), https://doi.org/10.1007/s12215-017-0316-8.
  • [72] Szirmai, J.: Decomposition method related to saturated hyperball packings. Ars Math. Contemp., 16, 349-358 (2019).
  • [73] Szirmai, J.: The optimal ball and horoball packings to the Coxeter honeycombs in the hyperbolic d-space. Beitr. Algebra Geom. 48/1, 35-47 (2007).
  • [74] Szirmai, J.: Horoball packings to the totally asymptotic regular simplex in the hyperbolic n-space. Aequat. Math. 85, 471-482 (2013), https://doi.org/10.1007/s00010-012-0158-6.
  • [75] Szirmai, J.: Horoball packings and their densities by generalized simplicial density function in the hyperbolic space. Acta Math. Hungar. 136/1-2, 39-55 (2012), https://doi.org/10.1007/s10474-012-0205-8.
  • [76] Szirmai, J.: The p-gonal prism tilings and their optimal hypersphere packings in the hyperbolic 3-space. Acta Math. Hungar. 111 (1-2), 65-76 (2006).
  • [77] Szirmai, J.: The regular prism tilings and their optimal hyperball packings in the hyperbolic n-space. Publ. Math. Debrecen. 69 (1-2), 195-207 (2006).
  • [78] Szirmai, J.: The optimal hyperball packings related to the smallest compact arithmetic 5-orbifolds. Kragujevac J. Math. 40(2), 260-270 (2016), https://doi.org/10.5937/KgJMath1602260S.
  • [79] Szirmai, J.: The least dense hyperball covering to the regular prism tilings in the hyperbolic n-space. Ann. Mat. Pur. Appl. 195/1, 235-248 (2016), https://doi.org/10.1007/s10231-014-0460-0.
  • [80] Thurston,W. P. (and Levy, S. editor): Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, New Jersey, vol. 1 (1997).
  • [81] Vránics, A., Szirmai, J.: Lattice coverings by congruent translation balls using translation-like bisector surfaces in Nil Geometry. KoG. 23, 6-17 (2019).
  • [82] Weeks, J. R.: Real-time animation in hyperbolic, spherical, and product geometries. A. Prékopa and E. Molnár, (eds.). Non-Euclidean Geometries, János Bolyai Memorial Volume, Mathematics and Its Applications, Springer Vol. 581, 287-305 (2006).
Yıl 2023, Cilt: 16 Sayı: 2, 608 - 643, 29.10.2023
https://doi.org/10.36890/iejg.1221802

Öz

Kaynakça

  • [1] Bezdek, K.: Sphere Packings Revisited. Eur. J. Combin. 27/6, 864–883 (2006).
  • [2] Böröczky, K.: Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hungar. 32, 243-261 (1978).
  • [3] Brodaczewska, K.: Elementargeometrie in Nil. Dissertation (Dr. rer. nat.) Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden (2014).
  • [4] Bölcskei, A., Szilágyi, B.: Frenet Formulas and Geodesics in Sol Geometry. Beitr. Algebra Geom. 48/2, 411-421 (2007).
  • [5] Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge Studies in Advances Mathematics, Cambridge (2006).
  • [6] Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. American Mathematical Society. (2006).
  • [7] Csima, G., Szirmai, J.: Interior angle sum of translation and geodesic triangles in^SL2R space. Filomat. 32/14, 5023–5036 (2018).
  • [8] Cavichioli, A., Molnár, E., Spaggiari, F., Szirmai, J.: Some tetrahedron manifolds with Sol geometry. J. Geometry. 105/3, 601-614 (2014).
  • [9] Divjak, B., Erjavec, Z., Szabolcs, B., Szilágyi, B.: Geodesics and geodesic spheres in^SL2R geometry. Math. Commun. 14/2, 413-424 (2009).
  • [10] Erjavec, Z., Horvat, D.: Biharmonic curves in^SL2R space. Math. Commun. 19 (2), 291-299 (2014).
  • [11] Erjavec, Z.: Minimal surfaces in^SL2R space. Glas. Mat. Ser. III. 50, 207-221 (2015).
  • [12] Erjavec, Z.: On Killing magnetic curves in^SL2R geometry. Rep. Math. Phys. 84 (3), 333-350 (2019).
  • [13] Erjavec, Z.: On a certain class of Weingarten surfaces in Sol space. Int. J. Appl. Math. 28 (5), 507-514 (2015).
  • [14] Erjavec, Z., Inoguchi, J.: On magnetic curves in almost cosymplectic Sol space. Results Math. 75:113, 16 pg (2020).
  • [15] Erjavec, Z., Inoguchi, J.: Killing magnetic curves in Sol space. Math. Phys. Anal. Geom., 21:15, 15 pg (2018).
  • [16] Eper, M., Szirmai, J.: Coverings with congruent and non-congruent hyperballs generated by doubly truncated Coxeter orthoschemes. Contributions to Discrete Mathematics. 17 No.2, 23-40 (2022), https://doi.org/10.11575/cdm.v17i2.
  • [17] Farkas, Z. J.: The classification of S2×R space groups. Beitr. Algebra Geom. 42, 235-250 (2001).
  • [18] Fejes Tóth, G., Kuperberg, W.: Packing and Covering with Convex Sets, Handbook of Convex Geometry Volume B, eds. Gruber, P.M., Willis J.M., pp. 799-860, North-Holland, (1983).
  • [19] Fejes Tóth, G., Kuperberg, G., Kuperberg, W.: Highly Saturated Packings and Reduced Coverings. Monatsh. Math. 125/2, 127-145 (1998).
  • [20] Fejes Tóth, L.: Regular Figures, Macmillan New York, 1964.
  • [21] Hales, T. C.: Historical Overview of the Kepler Conjecture. Discrete and Computational Geometry, 35, 5-20 (2006).
  • [22] Inoguchi, J.: Minimal translation surfaces in the Heisenberg group Nil3. Geom. Dedicata 161/1, 221-231 (2012).
  • [23] Kobayashi, S., Nomizu, K.: Fundation of differential geometry, I. Interscience, Wiley, New York (1963).
  • [24] Kozma, R. T., Szirmai, J.: Optimally dense packings for fully asymptotic Coxeter tilings by horoballs of different types. Monatsh. Math. 168/1, 27-47 (2012).
  • [25] Kozma, R. T., Szirmai, J.: New Lower Bound for the Optimal Ball Packing Density of Hyperbolic 4-space. Discrete Comput. Geom. 53/1, 182-198 (2015), https://doi.org/10.1007/s00454-014-9634-1.
  • [26] Kozma, R. T., Szirmai, J.: New horoball packing density lower bound in hyperbolic 5-space. Geom. Dedicata. 206/1, 1-25 (2020), https://doi.org/10.1007/s10711-019-00473-x.
  • [27] Kozma, R. T., Szirmai, J.: Horoball Packing Density Lower Bounds in Higher Dimensional Hyperbolic n-space for 6 ≤ n ≤ 9. Geom. Dedicata. (2023), https://doi.org/10.1007/s10711-023-00779-x.
  • [28] Kurusa, Á.: Ceva’s and Menelaus’ theorems in projective-metric spaces. J. Geom. 110/2, (2019), https://doi.org/10.1007/s00022-019-0495-x.
  • [29] Manzano, M.J., Torralbo, F.: New Examples of Constant Mean Curvature Surfaces in SXR and HXR. Michigan Math. J. 63, 701-723 (2014).
  • [30] Molnár, E.: The projective interpretation of the eight 3-dimensional homogeneous geometries. Beitr. Algebra Geom. 38 No. 2, 261-288 (1977).
  • [31] : Molnár, E., Szirmai, J.: Symmetries in the 8 homogeneous 3-geometries. Symmetry Cult. Sci. 21/1-3, 87-117 (2010).
  • [32] Molnár, E., Szilágyi, B.: Translation curves and their spheres in homogeneous geometries. Publ. Math. Debrecen. 78/2, 327-346 (2010).
  • [33] Molnár, E.: On projective models of Thurston geometries, some relevant notes on Nil orbifolds and manifolds. Sib. Electron. Math. Izv. 7, 491-498 (2010), http://mi.mathnet.ru/semr267.
  • [34] Molnár, E., Szirmai, J.: On Nil crystallography. Symmetry Cult. Sci. 17/1-2, 55-74 (2006).
  • [35] Molnár, E., Szirmai, J.: Top dense hyperbolic ball packings and coverings for complete Coxeter orthoscheme groups. Publications de l’Institut Mathématique. 103(117), 129-146 (2018), https://doi.org/10.2298/PIM1817129M.
  • [36] Molnár, E., Szirmai, J.: Classification of Sol lattices. Geom. Dedicata. 161/1, 251-275 (2012).
  • [37] Molnár, E., Szirmai, J., Vesnin, A.: Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links. J. Geom. 95, 91-133 (2009).
  • [38] Molnár, E., Szirmai, J.: Volumes and geodesic ball packings to the regular prism tilings in^SL2R space. Publ. Math. Debrecen. 84(1-2), 189-203 (2014).
  • [39] Molnár, E., Szirmai, J., Vesnin, A.: Packings by translation balls in^SL2R. J. Geom. 105(2), 287-306 (2014).
  • [40] Molnár E., Szirmai J., Vesnin A.: Geodesic and Translation Ball Packings Generated by Prismatic Tesselations of the Universal Cover of ^SL2R. Results in Math. 71), 623-642 (2017).
  • [41] Morabito, F., Rodriguez, M. M.: Classification of rotational special Weingarten surfaces of minimal type in S2×R and H2×R. Mathematische Zeitschrift. 273 (1-2), 379-399 (2013), https://doi.org/10.1007/s00209-012-1010-3.
  • [42] Németh, L.: Pascal pyramid in the space H2×R. Mathematical Communications. 22, 211-225 (2017). [43] Novello, T., da Silva, V., Velhoa, L.: Visualization of Nil, Sol, and^SL2R geometries. Computers and Graphics. 91, 219-231 (2020).
  • [44] Ohshika K., Papadopoulos, A. (editors): In the Tradition of Thurston Geometry and Topology, Springer International Publishing. (2020), ISBN:978-3-030-55927-4.
  • [45] Pallagi, J., Schultz, B., Szirmai, J.: Visualization of geodesic curves, spheres and equidistant surfaces in S2×R space. KoG. 14, 35-40 (2010).
  • [46] Pallagi, J., Schultz, B., Szirmai, J.: Equidistant surfaces in Nil space. Stud. Univ. Zilina, Math. Ser. 25, 31-40 (2011).
  • [47] Pallagi, J., Schultz, B., Szirmai, J.: Equidistant surfaces in H2×R space. KoG. 15, 3-6 (2011).
  • [48] Pallagi, J., Szirmai, J.: Visualization of the Dirichlet-Voronoi cells in S2×R space. Pollack Periodica. 7 Supp 1, 95–104 (2012), https://doi.org/10.1556/Pollack.7.2012.S.9.
  • [49] Papadopoulos, A., Su, W.: On hyperbolic analogues of some classical theorems in spherical geometry. hal-01064449 (2014).
  • [50] Rodriguez, M. M.: Minimal surfaces with limit ends in H2×R. Journal für die reine und angewandte Mathematik (Crelle’s Journal). 685, 123-141 (2013), https://doi.org/10.1515/crelle-2012-0010.
  • [51] Schultz B., Molnár E.: Geodesic lines and spheres, densest(?) geodesic ball packing in the new linear model of Nil geometry. Proceedings of the Czech-Slovak Conference on Geometry and Graphics. 177-186 (2015), ISBN 978-80-227-4479-9.
  • [52] Schultz, B., Szirmai, J.: On parallelohedra of Nil-space. Pollack Periodica. 7. Supp 1, 129-136 (2012).
  • [53] Schultz, B., Szirmai, J.: Geodesic ball packings generated by regular prism tilings in Nil geometry Miskolc Math. Notes. 23/1, 429-442 (2012), https://doi.org/10.18514/MMN.2022.2959.
  • [54] Scott, P.: The geometries of 3-manifolds. Bull. London Math. Soc. 15, 401-487 (1983).
  • [55] Szirmai, J.: The densest geodesic ball packing by a type of Nil lattices. Beitr. Algebra Geom. 48(2), 383-398 (2007).
  • [56] Szirmai, J.: A candidate to the densest packing with equal balls in the Thurston geometries. Beitr. Algebra Geom. 55(2), 441-452 (2014).
  • [57] Szirmai, J.: Lattice-like translation ball packings in Nil space. Publ. Math. Debrecen. 80(3-4), 427-440 (2012).
  • [58] Szirmai, J.: Nil geodesic triangles and their interior angle sums. Bull. Braz. Math. Soc. (N.S.) 49, 761-773 (2018).
  • [59] Szirmai, J.: Non-periodic geodesic ball packings to infinite regular prism tilings in SL(2,R) space. Rocky Mountain Journal of Mathematics. 46/3, 1055-1070 (2016).
  • [60] Szirmai, J.: Bisector surfaces and circumscribed spheres of tetrahedra derived by translation curves in Sol geometry. New York J. Math. 25, 107-122 (2019).
  • [61] Szirmai, J.: Simply transitive geodesic ball packings to S2 × R space groups generated by glide reflections. Ann. Mat. Pur. Appl., 193/4, 1201-1211 (2014), https://doi.org/10.1007/s10231-013-0324-z.
  • [62] Szirmai, J.: Geodesic ball packings in S2×R space for generalized Coxeter space groups. Beitr. Algebra Geom. 52, 413 - 430 (2011).
  • [63] Szirmai, J.: Geodesic ball packings in H2×R space for generalized Coxeter space groups. Math. Commun. 17/1, 151-170 (2012).
  • [64] Szirmai, J:. The densest translation ball packing by fundamental lattices in Sol space. Beitr. Algebra Geom. 51(2), 353-373 (2010).
  • [65] Szirmai, J.: Interior angle sums of geodesic triangles in S2×R and H2×R geometries. Bul. Acad. de Stiinte Republicii Mold. Mat. 93(2), 44-61 (2020).
  • [66] Szirmai, J.: Apollonius surfaces, circumscribed spheres of tetrahedra, Menelaus’ and Ceva’s theorems in S2×R and H2×R geometries. Q. J. Math. 73, 477-494 (2022), https://doi.org/10.1093/qmath/haab038.
  • [67] Szirmai, J.: On Menelaus’ and Ceva’s theorem in Nil geometry. Acta Univ. Sapientiae Math. (2023), arXiv: 2110.08877.
  • [68] Szirmai, J.: Regular prism tilings in^SL2R space Aequat. Math. 88 (1-2), 67-79 (2014), https://doi.org/10.1007/s00010-013-0221-y
  • [69] Szirmai, J.: Hyperball packings in hyperbolic 3-space. Mat. Vesn., 70/3, 211-221 (2018).
  • [70] Szirmai, J.: Packings with horo- and hyperballs generated by simple frustum orthoschemes. Acta Math. Hungar. 152/2, 365-382 (2017), https://doi.org/10.1007/s10474-017-0728-0.
  • [71] Szirmai, J.: Density upper bound of congruent and non-congruent hyperball packings generated by truncated regular simplex tilings. Rendiconti del Circolo Matematico di Palermo Series 2, 67, 307-322 (2018), https://doi.org/10.1007/s12215-017-0316-8.
  • [72] Szirmai, J.: Decomposition method related to saturated hyperball packings. Ars Math. Contemp., 16, 349-358 (2019).
  • [73] Szirmai, J.: The optimal ball and horoball packings to the Coxeter honeycombs in the hyperbolic d-space. Beitr. Algebra Geom. 48/1, 35-47 (2007).
  • [74] Szirmai, J.: Horoball packings to the totally asymptotic regular simplex in the hyperbolic n-space. Aequat. Math. 85, 471-482 (2013), https://doi.org/10.1007/s00010-012-0158-6.
  • [75] Szirmai, J.: Horoball packings and their densities by generalized simplicial density function in the hyperbolic space. Acta Math. Hungar. 136/1-2, 39-55 (2012), https://doi.org/10.1007/s10474-012-0205-8.
  • [76] Szirmai, J.: The p-gonal prism tilings and their optimal hypersphere packings in the hyperbolic 3-space. Acta Math. Hungar. 111 (1-2), 65-76 (2006).
  • [77] Szirmai, J.: The regular prism tilings and their optimal hyperball packings in the hyperbolic n-space. Publ. Math. Debrecen. 69 (1-2), 195-207 (2006).
  • [78] Szirmai, J.: The optimal hyperball packings related to the smallest compact arithmetic 5-orbifolds. Kragujevac J. Math. 40(2), 260-270 (2016), https://doi.org/10.5937/KgJMath1602260S.
  • [79] Szirmai, J.: The least dense hyperball covering to the regular prism tilings in the hyperbolic n-space. Ann. Mat. Pur. Appl. 195/1, 235-248 (2016), https://doi.org/10.1007/s10231-014-0460-0.
  • [80] Thurston,W. P. (and Levy, S. editor): Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, New Jersey, vol. 1 (1997).
  • [81] Vránics, A., Szirmai, J.: Lattice coverings by congruent translation balls using translation-like bisector surfaces in Nil Geometry. KoG. 23, 6-17 (2019).
  • [82] Weeks, J. R.: Real-time animation in hyperbolic, spherical, and product geometries. A. Prékopa and E. Molnár, (eds.). Non-Euclidean Geometries, János Bolyai Memorial Volume, Mathematics and Its Applications, Springer Vol. 581, 287-305 (2006).
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Jenő Szirmai 0000-0001-9610-7993

Erken Görünüm Tarihi 19 Ekim 2023
Yayımlanma Tarihi 29 Ekim 2023
Kabul Tarihi 11 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 2

Kaynak Göster

APA Szirmai, J. (2023). Classical Notions and Problems in Thurston Geometries. International Electronic Journal of Geometry, 16(2), 608-643. https://doi.org/10.36890/iejg.1221802
AMA Szirmai J. Classical Notions and Problems in Thurston Geometries. Int. Electron. J. Geom. Ekim 2023;16(2):608-643. doi:10.36890/iejg.1221802
Chicago Szirmai, Jenő. “Classical Notions and Problems in Thurston Geometries”. International Electronic Journal of Geometry 16, sy. 2 (Ekim 2023): 608-43. https://doi.org/10.36890/iejg.1221802.
EndNote Szirmai J (01 Ekim 2023) Classical Notions and Problems in Thurston Geometries. International Electronic Journal of Geometry 16 2 608–643.
IEEE J. Szirmai, “Classical Notions and Problems in Thurston Geometries”, Int. Electron. J. Geom., c. 16, sy. 2, ss. 608–643, 2023, doi: 10.36890/iejg.1221802.
ISNAD Szirmai, Jenő. “Classical Notions and Problems in Thurston Geometries”. International Electronic Journal of Geometry 16/2 (Ekim 2023), 608-643. https://doi.org/10.36890/iejg.1221802.
JAMA Szirmai J. Classical Notions and Problems in Thurston Geometries. Int. Electron. J. Geom. 2023;16:608–643.
MLA Szirmai, Jenő. “Classical Notions and Problems in Thurston Geometries”. International Electronic Journal of Geometry, c. 16, sy. 2, 2023, ss. 608-43, doi:10.36890/iejg.1221802.
Vancouver Szirmai J. Classical Notions and Problems in Thurston Geometries. Int. Electron. J. Geom. 2023;16(2):608-43.