Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 16 Sayı: 2, 715 - 726, 29.10.2023
https://doi.org/10.36890/iejg.1362590

Öz

Kaynakça

  • [1] Doğan, F., Yaylı, Y.: On isophote curves and their characterizations. Turkish Journal of Mathematics, 39, 650–664 (2015). https://doi.org/10.3906/mat-1410-4
  • [2] Düldül, M., Macit, N.: Relatively normal-slant helices lying on a surface and their characterizations. Hacettepe Journal of Mathematics and Statistics, 46, 397–408 (2017).
  • [3] Hananoi, S., Ito, N., Izumiya, S.: Spherical Darboux images of curves on surfaces. Beitr. Algebra Geom., 56, 575–585 (2015). https://doi.org/10.1007/s13366-015-0240-z
  • [4] Hananoi, S., Izumiya, S.: Normal developable surfaces of surfaces along curves. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 147, 177–203 (2017). https://doi.org/10.1017/S030821051600007X
  • [5] Izumiya, S., Otani, S.: Flat Approximations of Surfaces Along Curves. Demonstratio Mathematica, 48, 217–241 (2015). https://doi.org/10.1515/dema-2015-0018
  • [6] Kızıltuğ, S., Tarakcı, Ö., Yaylı, Y.: On the curves lying on parallel surfaces in the Euclidean 3-space E3. Journal of Advanced Research in Dynamical and Control Systems, 5, 26–35 (2013).
  • [7] Özkaldı, S., Yaylı, Y.: Constant Angle Surfaces and Curves in E3. International Electronic Journal of Geometry, 4, 70–78 (2011).
  • [8] Sabuncuoğlu, A.: Diferensiyel Geometri. Nobel Akademik Yayıncılık. Ankara (2016).

Approximations of Parallel Surfaces Along Curves

Yıl 2023, Cilt: 16 Sayı: 2, 715 - 726, 29.10.2023
https://doi.org/10.36890/iejg.1362590

Öz

In this paper, we study developable surfaces which are flat and normal approximation of parallel surfaces along curves associated with three special vector fields. It is known that a surface whose points are at a constant distance along the normal of the surface is called a parallel surface. We investigate singularities of such developable surfaces. We show that under what conditions the approach surfaces are parallel. Also, we show that the approach surfaces are constant angle ruled surfaces if the curves selected on the surfaces are isophote, relatively normal-slant helix and helix.

Kaynakça

  • [1] Doğan, F., Yaylı, Y.: On isophote curves and their characterizations. Turkish Journal of Mathematics, 39, 650–664 (2015). https://doi.org/10.3906/mat-1410-4
  • [2] Düldül, M., Macit, N.: Relatively normal-slant helices lying on a surface and their characterizations. Hacettepe Journal of Mathematics and Statistics, 46, 397–408 (2017).
  • [3] Hananoi, S., Ito, N., Izumiya, S.: Spherical Darboux images of curves on surfaces. Beitr. Algebra Geom., 56, 575–585 (2015). https://doi.org/10.1007/s13366-015-0240-z
  • [4] Hananoi, S., Izumiya, S.: Normal developable surfaces of surfaces along curves. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 147, 177–203 (2017). https://doi.org/10.1017/S030821051600007X
  • [5] Izumiya, S., Otani, S.: Flat Approximations of Surfaces Along Curves. Demonstratio Mathematica, 48, 217–241 (2015). https://doi.org/10.1515/dema-2015-0018
  • [6] Kızıltuğ, S., Tarakcı, Ö., Yaylı, Y.: On the curves lying on parallel surfaces in the Euclidean 3-space E3. Journal of Advanced Research in Dynamical and Control Systems, 5, 26–35 (2013).
  • [7] Özkaldı, S., Yaylı, Y.: Constant Angle Surfaces and Curves in E3. International Electronic Journal of Geometry, 4, 70–78 (2011).
  • [8] Sabuncuoğlu, A.: Diferensiyel Geometri. Nobel Akademik Yayıncılık. Ankara (2016).
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Büşra Köse 0009-0005-1739-4207

Yusuf Yaylı 0000-0003-4398-3855

Erken Görünüm Tarihi 29 Ekim 2023
Yayımlanma Tarihi 29 Ekim 2023
Kabul Tarihi 29 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 2

Kaynak Göster

APA Köse, B., & Yaylı, Y. (2023). Approximations of Parallel Surfaces Along Curves. International Electronic Journal of Geometry, 16(2), 715-726. https://doi.org/10.36890/iejg.1362590
AMA Köse B, Yaylı Y. Approximations of Parallel Surfaces Along Curves. Int. Electron. J. Geom. Ekim 2023;16(2):715-726. doi:10.36890/iejg.1362590
Chicago Köse, Büşra, ve Yusuf Yaylı. “Approximations of Parallel Surfaces Along Curves”. International Electronic Journal of Geometry 16, sy. 2 (Ekim 2023): 715-26. https://doi.org/10.36890/iejg.1362590.
EndNote Köse B, Yaylı Y (01 Ekim 2023) Approximations of Parallel Surfaces Along Curves. International Electronic Journal of Geometry 16 2 715–726.
IEEE B. Köse ve Y. Yaylı, “Approximations of Parallel Surfaces Along Curves”, Int. Electron. J. Geom., c. 16, sy. 2, ss. 715–726, 2023, doi: 10.36890/iejg.1362590.
ISNAD Köse, Büşra - Yaylı, Yusuf. “Approximations of Parallel Surfaces Along Curves”. International Electronic Journal of Geometry 16/2 (Ekim 2023), 715-726. https://doi.org/10.36890/iejg.1362590.
JAMA Köse B, Yaylı Y. Approximations of Parallel Surfaces Along Curves. Int. Electron. J. Geom. 2023;16:715–726.
MLA Köse, Büşra ve Yusuf Yaylı. “Approximations of Parallel Surfaces Along Curves”. International Electronic Journal of Geometry, c. 16, sy. 2, 2023, ss. 715-26, doi:10.36890/iejg.1362590.
Vancouver Köse B, Yaylı Y. Approximations of Parallel Surfaces Along Curves. Int. Electron. J. Geom. 2023;16(2):715-26.