Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Differentiable Sphere Theorem and Its Applications

Yıl 2024, Cilt: 17 Sayı: 2, 388 - 393
https://doi.org/10.36890/iejg.1529961

Öz

In this paper, we use the Lichnerowicz Laplacian to prove new results: the sphere theorem and the integral inequality for Einstein's infinitesimal deformations, which allow us to characterize spherical space forms. Our version of the sphere theorem states that a closed connected Riemannian manifold $(M, g)$ of even dimension $n>3$ is diffeomorphic to a Euclidean sphere or a real projective space if the inequality $Ric_{\rm max}(x) < n K_{\rm min}(x) g$ is true at each point $x\in M$, where $Ric_{\rm max}(x)$ is the maximum of the Ricci curvature, and $K_{\rm min}(x)$ is the minimum of the sectional curvature of $(M, g)$ at $x$. Since this inequality implies positive sectional curvature; therefore, our result partially answers Hopf's old open question.

Etik Beyan

Not required

Destekleyen Kurum

No

Teşekkür

Not required

Kaynakça

  • [1] Berger, M., Ebin, D.: Some decomposition of the space of symmetric tensors of a Riemannian manifold. Journal of Diff. Geometry, 3, 379-392 (1969).
  • [2] Besse, A.L.: Einstein Manifolds, Berlin, Springer (1987).
  • [3] Bishop, R.L., Goldberg, S.I.: Some implications of the generalized Gauss-Bonnet theorem. Transactions of the AMS 112 (3), 508-535 (1964).
  • [4] Brendle, S., Schoen, R.M.: Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math. 200, 1-13 (2008).
  • [5] Brendle, S., Schoen, R.: Curvature, sphere theorems, and the Ricci flow. Bull. Amer. Math. Soc. (N.S.) 48 (1), 1-32 (2011).
  • [6] Cao, X., Gursky, M.J., Tran, H.: Curvature of the second kind and a conjecture of Nishikawa. Commentarii Mathematici Helvetici, 98 (1), 195-216 (2023).
  • [7] Chern, S.S.: On the curvature and characteristic classes of a Riemannian manifold. Abh. Math. Sem. Univ. Hamburg, 20, 117-126 (1956).
  • [8] Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow, AMS Graduate Studies in Mathematics, 77, Providence, RI (2006).
  • [9] Lichnerowicz, A.: Propagateurs et commutateurs en relativite generate. Publ. Math., Inst. Hautes Étud. Sci. 10, 293-344 (1961).
  • [10] Mikeš, J., Rovenski, V., Stepanov, S.: An example of Lichnerowicz-type Laplacian. Ann. Global Anal. Geom. 58 (1), 19-34 (2020).
  • [11] Mikes, J., Rovenski, V., Stepanov, S., Tsyganok, I.: Application of the generalized Bochner technique to the study of conformally flat Riemannian manifolds. Mathematics, 9, 927 (2021).
  • [12] Rovenski, V., Stepanov, S., Tsyganok, I.: On the Betti and Tachibana numbers of compact Einstein manifolds. Mathematics, 7, 1210 (2019).
  • [13] Tachibana, Sh., Ogiue, K.: Les variétés riemanniennes dont l’opérateur de coubure restreint est positif sont des sphéres d’homologie réelle. C. R. Acad. Sci. Paris, 289, 29-30 (1979).
  • [14] Wolf, J.: Spaces of constant curvature, Publish or Perish, Houston TX (1984).
  • [15] Xu, H.-W., Gu, J.-Ru.: The differentiable sphere theorem for manifolds with positive Ricci curvature, Proc. AMS 140 (3), 1011-1021 (2012).
  • [16] Yano, K., Bochner, S.: Curvature and Betti numbers, Princeton, N. J., Princeton University Press (1953).
Yıl 2024, Cilt: 17 Sayı: 2, 388 - 393
https://doi.org/10.36890/iejg.1529961

Öz

Kaynakça

  • [1] Berger, M., Ebin, D.: Some decomposition of the space of symmetric tensors of a Riemannian manifold. Journal of Diff. Geometry, 3, 379-392 (1969).
  • [2] Besse, A.L.: Einstein Manifolds, Berlin, Springer (1987).
  • [3] Bishop, R.L., Goldberg, S.I.: Some implications of the generalized Gauss-Bonnet theorem. Transactions of the AMS 112 (3), 508-535 (1964).
  • [4] Brendle, S., Schoen, R.M.: Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math. 200, 1-13 (2008).
  • [5] Brendle, S., Schoen, R.: Curvature, sphere theorems, and the Ricci flow. Bull. Amer. Math. Soc. (N.S.) 48 (1), 1-32 (2011).
  • [6] Cao, X., Gursky, M.J., Tran, H.: Curvature of the second kind and a conjecture of Nishikawa. Commentarii Mathematici Helvetici, 98 (1), 195-216 (2023).
  • [7] Chern, S.S.: On the curvature and characteristic classes of a Riemannian manifold. Abh. Math. Sem. Univ. Hamburg, 20, 117-126 (1956).
  • [8] Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow, AMS Graduate Studies in Mathematics, 77, Providence, RI (2006).
  • [9] Lichnerowicz, A.: Propagateurs et commutateurs en relativite generate. Publ. Math., Inst. Hautes Étud. Sci. 10, 293-344 (1961).
  • [10] Mikeš, J., Rovenski, V., Stepanov, S.: An example of Lichnerowicz-type Laplacian. Ann. Global Anal. Geom. 58 (1), 19-34 (2020).
  • [11] Mikes, J., Rovenski, V., Stepanov, S., Tsyganok, I.: Application of the generalized Bochner technique to the study of conformally flat Riemannian manifolds. Mathematics, 9, 927 (2021).
  • [12] Rovenski, V., Stepanov, S., Tsyganok, I.: On the Betti and Tachibana numbers of compact Einstein manifolds. Mathematics, 7, 1210 (2019).
  • [13] Tachibana, Sh., Ogiue, K.: Les variétés riemanniennes dont l’opérateur de coubure restreint est positif sont des sphéres d’homologie réelle. C. R. Acad. Sci. Paris, 289, 29-30 (1979).
  • [14] Wolf, J.: Spaces of constant curvature, Publish or Perish, Houston TX (1984).
  • [15] Xu, H.-W., Gu, J.-Ru.: The differentiable sphere theorem for manifolds with positive Ricci curvature, Proc. AMS 140 (3), 1011-1021 (2012).
  • [16] Yano, K., Bochner, S.: Curvature and Betti numbers, Princeton, N. J., Princeton University Press (1953).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Vladimir Rovenski 0000-0003-0591-8307

Sergey Stepanov 0000-0003-1734-8874

Erken Görünüm Tarihi 19 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 18 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Rovenski, V., & Stepanov, S. (2024). A New Differentiable Sphere Theorem and Its Applications. International Electronic Journal of Geometry, 17(2), 388-393. https://doi.org/10.36890/iejg.1529961
AMA Rovenski V, Stepanov S. A New Differentiable Sphere Theorem and Its Applications. Int. Electron. J. Geom. Eylül 2024;17(2):388-393. doi:10.36890/iejg.1529961
Chicago Rovenski, Vladimir, ve Sergey Stepanov. “A New Differentiable Sphere Theorem and Its Applications”. International Electronic Journal of Geometry 17, sy. 2 (Eylül 2024): 388-93. https://doi.org/10.36890/iejg.1529961.
EndNote Rovenski V, Stepanov S (01 Eylül 2024) A New Differentiable Sphere Theorem and Its Applications. International Electronic Journal of Geometry 17 2 388–393.
IEEE V. Rovenski ve S. Stepanov, “A New Differentiable Sphere Theorem and Its Applications”, Int. Electron. J. Geom., c. 17, sy. 2, ss. 388–393, 2024, doi: 10.36890/iejg.1529961.
ISNAD Rovenski, Vladimir - Stepanov, Sergey. “A New Differentiable Sphere Theorem and Its Applications”. International Electronic Journal of Geometry 17/2 (Eylül 2024), 388-393. https://doi.org/10.36890/iejg.1529961.
JAMA Rovenski V, Stepanov S. A New Differentiable Sphere Theorem and Its Applications. Int. Electron. J. Geom. 2024;17:388–393.
MLA Rovenski, Vladimir ve Sergey Stepanov. “A New Differentiable Sphere Theorem and Its Applications”. International Electronic Journal of Geometry, c. 17, sy. 2, 2024, ss. 388-93, doi:10.36890/iejg.1529961.
Vancouver Rovenski V, Stepanov S. A New Differentiable Sphere Theorem and Its Applications. Int. Electron. J. Geom. 2024;17(2):388-93.