Year 2025,
Volume: 18 Issue: 2, 185 - 195, 19.10.2025
Ayşe Zeynep Azak
,
Arzu Sürekçi
,
Mehmet Ali Güngör
References
-
Aksoyak, F.K.: A new type of quaternionic frame in R4, Int. J. Geom. Methods Mod. Phys. 16 (6), 1959984 (2019).
https://doi.org/10.1142/S0219887819500841
-
Aksoyak, F.K.: Quaternionic Bertrand curves according to type-2-quaternionic frame in R4, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
71 (2), 395-406 (2022). https://doi.org/10.31801/cfsuasmas.991631
-
Aksoyak, F.K.: Quaternionic (1, 3)-Bertrand curves according to type-2-quaternionic frame in R4, Konuralp J. Math. 9 (2), 346-355 (2021).
-
Balgetir, H., Bektaş, M., Ergüt, M.: Bertrand curves for nonnull curves in 3-dimensional Lorentzian space, Hadronic J. 27, 229-236 (2004).
-
Balgetir, H., Bekta¸s, M., Inoguchi, J.: Null Bertrand curves in Minkowski 3-space and their characterizations, Not. Mat. 23 (1), 7–13 (2004).
https://doi.org/10.1285/i15900932v23n1p7
-
Bertrand, J.M.: Mémoire sur la théorie des courbes á double courbure. J. Math. Pures Appl. 15, 332–350 (1850).
-
Bharathi, K., Nagaraj, M.: Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math. 18 (6), 507-511 (1987).
-
Camci, Ç., Uçum, A., İIlarslan, K.: A new approach to Bertrand curves in Euclidean 3-space, J. Geom. 111 (49), 1–15 (2020).
https://doi.org/10.1007/s00022-020-00560-5
-
Dede, M., Ekici, C.: Directional Bertrand curves, Gazi Univ. J. Sci. 31 (1), 202–211 (2018).
-
Ekmekci, N., İlarslan, K.: On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst. 3 (2), 17–24 (2001).
-
Elsayied, H.K., Altaha, A.A., Elsharkawy, A.: Bertrand curves with the modified orthogonal frame in Minkowski 3-space $E_1^3$, Rev. Educ. 392 (6), 43-55 (2022).
-
Elsharkawy, A., Tashkandy, Y., Emam W., Cesarano, C., Elsharkawy, N.: On some quasi-curves in Galilean three-space, Axioms 12 (9), 823
(2023). https://doi.org/10.3390/axioms12090823
-
Elzawya, M., Mosab, S.: Quaternionic Bertrand curves in the Galilean space, Filomat 34 (1), 59–66 (2020).
https://doi.org/10.2298/FIL2001059E
-
Ergüt, M., Öztekin, H., Gün Bozok, H.: Representation formulae for Bertrand curves in Galilean and pseudo-Galilean 3-space, Adv. Model. Optim.
16 (2), 371-385 (2014).
-
Ersoy, S., Tosun, M.: Timelike Bertrand curves in semi-Euclidean space, Int. J. Math. Stat. 14 (2), 78-89 (2013).
[16] Fukunaga, T., Takahashi, M.: Existence conditions of framed curves for smooth curves, J. Geom. 108 (2), 763-774 (2017).
https://doi.org/10.1007/s00022-017-0371-5
-
Güner, G., Ekmekçi, N.: On the spherical curves and Bertrand curves in Minkowski 3-space, J. Math. Comput. Sci. 2 (4), 898-906 (2012).
-
Gök, İ., Nurkan, S.K., İlarslan, K.: On pseudo null Bertrand curves in Minkowski space-time, Kyungpook Math. J. 54 (4), 685-697 (2014). 108 (2), 763-774 (2017). https://doi.org/10.5666/KMJ.2014.54.4.685
-
Honda, S., Takahashi, M.: Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space, Turk. J. Math. 44 (3), 883-899
(2020). https://doi.org/10.3906/mat-1906-71
-
Honda, S., Takahashi, M., Yu, H.: Bertrand and Mannheim curves of framed curves in the 4-dimensional Euclidean space, J. Geom. 114 (2), 12
(2023). https://doi.org/10.1007/s00022-023-00673-7
-
Honda, S., Takahashi, M.: Framed curves in the Euclidean space, Adv. Geom. 16 (3), 265–276 (2016). https://doi.org/10.1515/advgeom-2015-
0035
-
Izumiya, S., Takeuchi, N.: Generic properties of helices and Bertrand curves, J. Geom. 74, 97–109 (2002). https://doi.org/10.1007/PL00012543
-
İlarslan, K., Aslan, N.K.: On spacelike Bertrand curve in Minkowski 3-space, Konuralp J. Math. 5 (1), 214-222 (2017).
-
İşbilir, Z., Özen, K.E., Tosun, M.: Bertrand partner p-trajectories in the Euclidean 3-space E3, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math.
Stat. 72 (1), 216–228 (2023).
-
Kazaz, M., Uğurlu, H.H., Önder, M., Oral, S.: Bertrand partner D-curves in the Euclidean 3-space E3, AKU J. Sci. Eng. 16 (1), 76-83 (2016).
-
Keçilioğlu, O., İlarslan, K.: Quaternionic Bertrand curves in Euclidean 4-space, Bull. Math. Anal. Appl. 5 (3), 27-38 (2013).
-
Lone, M.S., Es, H., Karacan, M.K., Bukcu, B.: On some curves with modified orthogonal frame in Euclidean 3-space, Iran. J. Sci. Technol. Trans.
A Sci. 43, 1905-1916 (2009).
-
Lucas, P., Ortega-Yagües, J.A.: Bertrand curves in the three-dimensional sphere, J. Geom. Phys. 62 (9), 1903–1914 (2012).
https://doi.org/10.1016/j.geomphys.2012.05.013
-
Masal, M., Azak, A.Z.: Bertrand curves and Bishop frame in the 3-dimensional Euclidean space, Sakarya Univ. J. Sci. 21 (6), 1140-1145 (2017).
-
Matsuda, H., Yorozu, S.: Notes on Bertrand curves, Yokohama Math. J. 50 (1-2), 41–58 (2003).
-
Öğrenmiş, A.O., Öztekin, H., Ergüt, M.: Bertrand curves in Galilean space and their characterizations, Kragujevac J. Math. 32 (32), 139–147
(2009).
-
Pears, L.R.: Bertrand curves in Riemannian space, J. Lond. Math. Soc. 1 (3), 180–183 (1935). https://doi.org/10.1112/jlms/s1-10.2.180
-
Takahashi, M., Yu, H.: Bertrand and Mannheim curves of spherical framed curves in a three-dimensional sphere, Mathematics 10 (8), 1292 (2022).
https://doi.org/10.3390/math10081292
-
Tunçer, Y., Ünal, S.: New representations of Bertrand pairs in Euclidean 3-space, ppl. Math. Comput. 219 (4), 1833-1842 (2012).
https://doi.org/10.1016/j.amc.2012.06.021
-
Yakub, Z.D., Güngör, M.A.: Quaternionic framed curves, Math. Sci. Appl. E-Notes (accepted, in press) (2025).
-
Zhang, C., Pei, D.: Generalized Bertrand curves in Minkowski 3-space, Mathematics 8 (12), 2199 (2020). https://doi.org/10.3390/math8122199
-
Yerlikaya, F., Karaahmetoglu, S., Aydemir, I.: On the Bertrand B-pair curve in 3-dimensional Euclidean space, J. Sci. Arts 3 (36), 215–224 (2016).
https://doi.org/10.5269/bspm.v35i2.24309
Quaternionic Framed Bertrand Curves
Year 2025,
Volume: 18 Issue: 2, 185 - 195, 19.10.2025
Ayşe Zeynep Azak
,
Arzu Sürekçi
,
Mehmet Ali Güngör
Abstract
There is no pair of Bertrand quaternionic curves in the classical sense in quaternionic space. Therefore, realizing that investigating singular points and analyzing their properties and behavior is a rising topic in differential geometry, framed Bertrand mates, which are singular have been defined in the quaternionic space. The characteristic properties of these curves have been given. Thus, we have proven that the distance between these pairs of curves remains constant. The conditions for framed quaternionic curves to be Bertrand mates have been shown. Then, we demonstrate that Bertrand’s partner of any framed quaternionic curve is a framed quaternionic curve. Furthermore, the relationship between the curvatures of quaternionic framed Bertrand curves has been given. Finally, an example has been given that supports the proven theorem in our study.
References
-
Aksoyak, F.K.: A new type of quaternionic frame in R4, Int. J. Geom. Methods Mod. Phys. 16 (6), 1959984 (2019).
https://doi.org/10.1142/S0219887819500841
-
Aksoyak, F.K.: Quaternionic Bertrand curves according to type-2-quaternionic frame in R4, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
71 (2), 395-406 (2022). https://doi.org/10.31801/cfsuasmas.991631
-
Aksoyak, F.K.: Quaternionic (1, 3)-Bertrand curves according to type-2-quaternionic frame in R4, Konuralp J. Math. 9 (2), 346-355 (2021).
-
Balgetir, H., Bektaş, M., Ergüt, M.: Bertrand curves for nonnull curves in 3-dimensional Lorentzian space, Hadronic J. 27, 229-236 (2004).
-
Balgetir, H., Bekta¸s, M., Inoguchi, J.: Null Bertrand curves in Minkowski 3-space and their characterizations, Not. Mat. 23 (1), 7–13 (2004).
https://doi.org/10.1285/i15900932v23n1p7
-
Bertrand, J.M.: Mémoire sur la théorie des courbes á double courbure. J. Math. Pures Appl. 15, 332–350 (1850).
-
Bharathi, K., Nagaraj, M.: Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math. 18 (6), 507-511 (1987).
-
Camci, Ç., Uçum, A., İIlarslan, K.: A new approach to Bertrand curves in Euclidean 3-space, J. Geom. 111 (49), 1–15 (2020).
https://doi.org/10.1007/s00022-020-00560-5
-
Dede, M., Ekici, C.: Directional Bertrand curves, Gazi Univ. J. Sci. 31 (1), 202–211 (2018).
-
Ekmekci, N., İlarslan, K.: On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst. 3 (2), 17–24 (2001).
-
Elsayied, H.K., Altaha, A.A., Elsharkawy, A.: Bertrand curves with the modified orthogonal frame in Minkowski 3-space $E_1^3$, Rev. Educ. 392 (6), 43-55 (2022).
-
Elsharkawy, A., Tashkandy, Y., Emam W., Cesarano, C., Elsharkawy, N.: On some quasi-curves in Galilean three-space, Axioms 12 (9), 823
(2023). https://doi.org/10.3390/axioms12090823
-
Elzawya, M., Mosab, S.: Quaternionic Bertrand curves in the Galilean space, Filomat 34 (1), 59–66 (2020).
https://doi.org/10.2298/FIL2001059E
-
Ergüt, M., Öztekin, H., Gün Bozok, H.: Representation formulae for Bertrand curves in Galilean and pseudo-Galilean 3-space, Adv. Model. Optim.
16 (2), 371-385 (2014).
-
Ersoy, S., Tosun, M.: Timelike Bertrand curves in semi-Euclidean space, Int. J. Math. Stat. 14 (2), 78-89 (2013).
[16] Fukunaga, T., Takahashi, M.: Existence conditions of framed curves for smooth curves, J. Geom. 108 (2), 763-774 (2017).
https://doi.org/10.1007/s00022-017-0371-5
-
Güner, G., Ekmekçi, N.: On the spherical curves and Bertrand curves in Minkowski 3-space, J. Math. Comput. Sci. 2 (4), 898-906 (2012).
-
Gök, İ., Nurkan, S.K., İlarslan, K.: On pseudo null Bertrand curves in Minkowski space-time, Kyungpook Math. J. 54 (4), 685-697 (2014). 108 (2), 763-774 (2017). https://doi.org/10.5666/KMJ.2014.54.4.685
-
Honda, S., Takahashi, M.: Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space, Turk. J. Math. 44 (3), 883-899
(2020). https://doi.org/10.3906/mat-1906-71
-
Honda, S., Takahashi, M., Yu, H.: Bertrand and Mannheim curves of framed curves in the 4-dimensional Euclidean space, J. Geom. 114 (2), 12
(2023). https://doi.org/10.1007/s00022-023-00673-7
-
Honda, S., Takahashi, M.: Framed curves in the Euclidean space, Adv. Geom. 16 (3), 265–276 (2016). https://doi.org/10.1515/advgeom-2015-
0035
-
Izumiya, S., Takeuchi, N.: Generic properties of helices and Bertrand curves, J. Geom. 74, 97–109 (2002). https://doi.org/10.1007/PL00012543
-
İlarslan, K., Aslan, N.K.: On spacelike Bertrand curve in Minkowski 3-space, Konuralp J. Math. 5 (1), 214-222 (2017).
-
İşbilir, Z., Özen, K.E., Tosun, M.: Bertrand partner p-trajectories in the Euclidean 3-space E3, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math.
Stat. 72 (1), 216–228 (2023).
-
Kazaz, M., Uğurlu, H.H., Önder, M., Oral, S.: Bertrand partner D-curves in the Euclidean 3-space E3, AKU J. Sci. Eng. 16 (1), 76-83 (2016).
-
Keçilioğlu, O., İlarslan, K.: Quaternionic Bertrand curves in Euclidean 4-space, Bull. Math. Anal. Appl. 5 (3), 27-38 (2013).
-
Lone, M.S., Es, H., Karacan, M.K., Bukcu, B.: On some curves with modified orthogonal frame in Euclidean 3-space, Iran. J. Sci. Technol. Trans.
A Sci. 43, 1905-1916 (2009).
-
Lucas, P., Ortega-Yagües, J.A.: Bertrand curves in the three-dimensional sphere, J. Geom. Phys. 62 (9), 1903–1914 (2012).
https://doi.org/10.1016/j.geomphys.2012.05.013
-
Masal, M., Azak, A.Z.: Bertrand curves and Bishop frame in the 3-dimensional Euclidean space, Sakarya Univ. J. Sci. 21 (6), 1140-1145 (2017).
-
Matsuda, H., Yorozu, S.: Notes on Bertrand curves, Yokohama Math. J. 50 (1-2), 41–58 (2003).
-
Öğrenmiş, A.O., Öztekin, H., Ergüt, M.: Bertrand curves in Galilean space and their characterizations, Kragujevac J. Math. 32 (32), 139–147
(2009).
-
Pears, L.R.: Bertrand curves in Riemannian space, J. Lond. Math. Soc. 1 (3), 180–183 (1935). https://doi.org/10.1112/jlms/s1-10.2.180
-
Takahashi, M., Yu, H.: Bertrand and Mannheim curves of spherical framed curves in a three-dimensional sphere, Mathematics 10 (8), 1292 (2022).
https://doi.org/10.3390/math10081292
-
Tunçer, Y., Ünal, S.: New representations of Bertrand pairs in Euclidean 3-space, ppl. Math. Comput. 219 (4), 1833-1842 (2012).
https://doi.org/10.1016/j.amc.2012.06.021
-
Yakub, Z.D., Güngör, M.A.: Quaternionic framed curves, Math. Sci. Appl. E-Notes (accepted, in press) (2025).
-
Zhang, C., Pei, D.: Generalized Bertrand curves in Minkowski 3-space, Mathematics 8 (12), 2199 (2020). https://doi.org/10.3390/math8122199
-
Yerlikaya, F., Karaahmetoglu, S., Aydemir, I.: On the Bertrand B-pair curve in 3-dimensional Euclidean space, J. Sci. Arts 3 (36), 215–224 (2016).
https://doi.org/10.5269/bspm.v35i2.24309