Stoichiometric methane air swirling flame has been modelled using RANS equations and a simplified mechanisms of reaction. The reaction zone is strongly affected by the swirl intensity. The higher the swirl number is, the narrower the reaction zone is. The thermodynamic state of reaction products matches well that of equilibrium state at constant pressure.
Chung T. J. "Computational Fluid Dynamics" Cambridge. 2006
Mira Martinez D., Cluff D.L., Jiang X., Numerical investigation of the burning characteristics of ventilation air methane in a combustion based mitigation system, Fuel Vol. 133 (2014) pp. 182–193 dx.doi.org/10.1016/j.fuel.2014.05.022
Chen Z., Ruan S., Swaminathan N. Simulation of turbulent lifted methane jet flames: Effects of air-dilution and transient flame propagation Combustion and Flame Vol. 162 (2015) pp. 703–716 dx.doi.org/10.1016/j.combustflame.2014.09.010
Ghasemi E., Soleimani S., Lin C.X. RANS simulation of methane-air burner using local extinction approach within eddy dissipation concept by OpenFOAM International Communications in Heat and Mass Transfer Vol 54 (2014) pp. 96–102 dx.doi.org/10.1016/j.icheatmasstransfer.2014.03.006
Parra T., Vuorinen V., Perez R., Szasz R. and Castro F.. Aerodynamic characterization of isothermal swirling flows in combustors. International Journal of Energy and Environmental Engineering (2014) 5:85.
Parra T., Perez R., Vuorinen V., Rodriguez M.A., Castro F. Flow features of confined swirling jets International Journal of Automotive Engineering and Technologies Vol. 4, Issue 1, 2015 pp. 12 – 15,
Roback R., Johnson B.V.. Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983
Kuo K. K. Principles of Combustion. Wiley Interscience. 1986
Chung T. J. "Computational Fluid Dynamics" Cambridge. 2006
Mira Martinez D., Cluff D.L., Jiang X., Numerical investigation of the burning characteristics of ventilation air methane in a combustion based mitigation system, Fuel Vol. 133 (2014) pp. 182–193 dx.doi.org/10.1016/j.fuel.2014.05.022
Chen Z., Ruan S., Swaminathan N. Simulation of turbulent lifted methane jet flames: Effects of air-dilution and transient flame propagation Combustion and Flame Vol. 162 (2015) pp. 703–716 dx.doi.org/10.1016/j.combustflame.2014.09.010
Ghasemi E., Soleimani S., Lin C.X. RANS simulation of methane-air burner using local extinction approach within eddy dissipation concept by OpenFOAM International Communications in Heat and Mass Transfer Vol 54 (2014) pp. 96–102 dx.doi.org/10.1016/j.icheatmasstransfer.2014.03.006
Parra T., Vuorinen V., Perez R., Szasz R. and Castro F.. Aerodynamic characterization of isothermal swirling flows in combustors. International Journal of Energy and Environmental Engineering (2014) 5:85.
Parra T., Perez R., Vuorinen V., Rodriguez M.A., Castro F. Flow features of confined swirling jets International Journal of Automotive Engineering and Technologies Vol. 4, Issue 1, 2015 pp. 12 – 15,
Roback R., Johnson B.V.. Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983
Kuo K. K. Principles of Combustion. Wiley Interscience. 1986
Parra-santos, M. T., Perez, R., Mendoza, V., Rodriguez, M. A., et al. (2016). Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers, 4(3), 65-67. https://doi.org/10.18100/ijamec.69979
AMA
Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F. Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers. August 2016;4(3):65-67. doi:10.18100/ijamec.69979
Chicago
Parra-santos, M. Teresa, Ruben Perez, Victor Mendoza, Miguel A. Rodriguez, and Francisco Castro. “Influence of Swirl Number on Semi-Confined Flames”. International Journal of Applied Mathematics Electronics and Computers 4, no. 3 (August 2016): 65-67. https://doi.org/10.18100/ijamec.69979.
EndNote
Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F (August 1, 2016) Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers 4 3 65–67.
IEEE
M. T. Parra-santos, R. Perez, V. Mendoza, M. A. Rodriguez, and F. Castro, “Influence of Swirl Number on Semi-Confined Flames”, International Journal of Applied Mathematics Electronics and Computers, vol. 4, no. 3, pp. 65–67, 2016, doi: 10.18100/ijamec.69979.
ISNAD
Parra-santos, M. Teresa et al. “Influence of Swirl Number on Semi-Confined Flames”. International Journal of Applied Mathematics Electronics and Computers 4/3 (August 2016), 65-67. https://doi.org/10.18100/ijamec.69979.
JAMA
Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F. Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers. 2016;4:65–67.
MLA
Parra-santos, M. Teresa et al. “Influence of Swirl Number on Semi-Confined Flames”. International Journal of Applied Mathematics Electronics and Computers, vol. 4, no. 3, 2016, pp. 65-67, doi:10.18100/ijamec.69979.
Vancouver
Parra-santos MT, Perez R, Mendoza V, Rodriguez MA, Castro F. Influence of Swirl Number on Semi-Confined Flames. International Journal of Applied Mathematics Electronics and Computers. 2016;4(3):65-7.