BibTex RIS Kaynak Göster

Automatic System for Classification of Precipitation Cells

Yıl 2015, Cilt: 3 Sayı: 3, 189 - 193, 29.06.2015
https://doi.org/10.18100/ijamec.77967

Öz

This paper presents an automatic system for classification of the precipitations cells, conceived around a graphic interface. This interface is based on the fractal geometry and particularly on fractal dimension and the fractal lacunarity. We have initially analyzed these two parameters and we showed that they can be useful as discriminating parameters. Then, we developed a graphical interface which makes possible to identify in real time the type of cells. This tool was tested on different areas from the earth and showed its efficiency whatever the studied site. This system can be used in weather radar for the improvement of the precipitations estimations and in telecommunication for the correction of the signal for the microwave links.

Kaynakça

  • A. Tokey and D. A. Short (1996). Evidence from tropical raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. NASA Goddard Space Flight Center, Greenbelt, Maryland.
  • N. E. Anagnostou (2004). A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol. Appl., vol. 11, pp. 291-300.
  • M. I. Biggerstaff and Listemaa S. A. (2000). An improved scheme for convective/stratiform echo classification using radar reflectivity. Am. Meteorol. Soc., vol. 39, pp. 2129–213.
  • M. Steiner, R. A. Jr. Houze, and S. E. Yuter (1995). Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol., vol. 34.
  • R. A. Houze, Jr. (1993). Cloud Dynamics. Academic Press.
  • J. Gao, D. J. Stensrud (2012). Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification. J. Atmos. Sci., vol. 69, pp. 1054–1065.
  • C. Gao, A. Robock, S. Self, J. B. Witter, J. P. Steffenson, H. B. Clausen, M. L. Siggaard-Andersen, S. Johnsen, P. A. Mayewski, and C. Ammann (2006). The 1452 or 1453 AD Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years. J. Geophys. Res., vol. 111.
  • E. N. Anagnostou, and W. F. Krajewski (1998). Calibration of the WSR-88D precipitation processing subsystem. Wea. & Forecasting, vol. 13, pp. 396–406.
  • Y. Yang, X. Chen, and Q. Youcun (2013). Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. Journal of Geophysical Research Atmospheres, vol. 118, pp. 1–10.
  • F. Tridon, J. Van Baelen and Y. Pointin (2010). Identification of Convective and Stratiform Areas towards improved precipitation estimation with a local area X-band radar. Sibiu, Romania, Advance in Radar Technology, pp. 219–225.
  • A. Nzeukou, H. Sauvageot (2002). Distribution of Rainfall Parameters near the Coasts of France and Senegal. Journal of Applied Meteorology, vol. 41 :1, pp. 69-82.
  • H. Sauvageot, G. Despaux (1990). SANAGA : A digital acquisition and visualization of radar data for the validity of satellite precipitation estimates, Standby climate satellite. vol. 31, pp. 51-55.
  • -
  • D. B. Wolff, D. A. Marks, E. Amitai, D. S. Silberstein, B., L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt (2005). Ground Validation for the Tropical Rainfall Measurement Mission (TRMM). J. Atmos. Ocean. Tech., vol. 31. pp. 51-55.
  • B.B. Mandelbrot (1983). The fractal geometry of nature. Freeman, W. H. Freeman and Company, New York, USA.
  • K. I. Kilic, R. H. Abiyev (2011). Exploiting the synergy between fractal dimension and lacunarity for improved texture recognition. Signal Processing, vol. 91, pp. 2332–2344.
  • S. Lovejoy and D. Schertzer (1990). Multifractals, Universality classes and satellite and radar measurement of cloud and rain fields. Journal of geophysical research, vol. 95(D3), pp. 2021- 2034.
  • K. Falconer (1990). Fractal Geometry. Mathematical foundations and applications. John Wiley & Sons, Chichester, England, pp. 288.
  • C. Allain, M. Cloitre (1991). Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A, vol. 44, pp. 3552–3558.
  • N. Azzaz and B. Haddad (2013). Structure Analysis and Classification of Precipitation Cells by Fractal Geometry. Journal of Electronics, Science and Technology. vol. 12, in press.
  • D. Schertzer and S. Lovejoy (1992). Hard and soft multifractal processes. Physical Review A, vol. 185(1-4), pp. 187-194.
  • Z. Annamaria, R. Eleonori,, M. Pierluigi, R. Rossi, and R. Murri (2005). Medical Imaging and Osteoporosis: Fractal’s Lacunarity Analysis of Trabecular Bone in MR Images. vol. 05, pp. 1063-7125.

Original Research Paper

Yıl 2015, Cilt: 3 Sayı: 3, 189 - 193, 29.06.2015
https://doi.org/10.18100/ijamec.77967

Öz

Kaynakça

  • A. Tokey and D. A. Short (1996). Evidence from tropical raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. NASA Goddard Space Flight Center, Greenbelt, Maryland.
  • N. E. Anagnostou (2004). A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol. Appl., vol. 11, pp. 291-300.
  • M. I. Biggerstaff and Listemaa S. A. (2000). An improved scheme for convective/stratiform echo classification using radar reflectivity. Am. Meteorol. Soc., vol. 39, pp. 2129–213.
  • M. Steiner, R. A. Jr. Houze, and S. E. Yuter (1995). Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol., vol. 34.
  • R. A. Houze, Jr. (1993). Cloud Dynamics. Academic Press.
  • J. Gao, D. J. Stensrud (2012). Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification. J. Atmos. Sci., vol. 69, pp. 1054–1065.
  • C. Gao, A. Robock, S. Self, J. B. Witter, J. P. Steffenson, H. B. Clausen, M. L. Siggaard-Andersen, S. Johnsen, P. A. Mayewski, and C. Ammann (2006). The 1452 or 1453 AD Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years. J. Geophys. Res., vol. 111.
  • E. N. Anagnostou, and W. F. Krajewski (1998). Calibration of the WSR-88D precipitation processing subsystem. Wea. & Forecasting, vol. 13, pp. 396–406.
  • Y. Yang, X. Chen, and Q. Youcun (2013). Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. Journal of Geophysical Research Atmospheres, vol. 118, pp. 1–10.
  • F. Tridon, J. Van Baelen and Y. Pointin (2010). Identification of Convective and Stratiform Areas towards improved precipitation estimation with a local area X-band radar. Sibiu, Romania, Advance in Radar Technology, pp. 219–225.
  • A. Nzeukou, H. Sauvageot (2002). Distribution of Rainfall Parameters near the Coasts of France and Senegal. Journal of Applied Meteorology, vol. 41 :1, pp. 69-82.
  • H. Sauvageot, G. Despaux (1990). SANAGA : A digital acquisition and visualization of radar data for the validity of satellite precipitation estimates, Standby climate satellite. vol. 31, pp. 51-55.
  • -
  • D. B. Wolff, D. A. Marks, E. Amitai, D. S. Silberstein, B., L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt (2005). Ground Validation for the Tropical Rainfall Measurement Mission (TRMM). J. Atmos. Ocean. Tech., vol. 31. pp. 51-55.
  • B.B. Mandelbrot (1983). The fractal geometry of nature. Freeman, W. H. Freeman and Company, New York, USA.
  • K. I. Kilic, R. H. Abiyev (2011). Exploiting the synergy between fractal dimension and lacunarity for improved texture recognition. Signal Processing, vol. 91, pp. 2332–2344.
  • S. Lovejoy and D. Schertzer (1990). Multifractals, Universality classes and satellite and radar measurement of cloud and rain fields. Journal of geophysical research, vol. 95(D3), pp. 2021- 2034.
  • K. Falconer (1990). Fractal Geometry. Mathematical foundations and applications. John Wiley & Sons, Chichester, England, pp. 288.
  • C. Allain, M. Cloitre (1991). Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A, vol. 44, pp. 3552–3558.
  • N. Azzaz and B. Haddad (2013). Structure Analysis and Classification of Precipitation Cells by Fractal Geometry. Journal of Electronics, Science and Technology. vol. 12, in press.
  • D. Schertzer and S. Lovejoy (1992). Hard and soft multifractal processes. Physical Review A, vol. 185(1-4), pp. 187-194.
  • Z. Annamaria, R. Eleonori,, M. Pierluigi, R. Rossi, and R. Murri (2005). Medical Imaging and Osteoporosis: Fractal’s Lacunarity Analysis of Trabecular Bone in MR Images. vol. 05, pp. 1063-7125.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Azzaz Nafissa

Haddad Boualem Bu kişi benim

Yayımlanma Tarihi 29 Haziran 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 3

Kaynak Göster

APA Nafissa, A., & Boualem, H. (2015). Automatic System for Classification of Precipitation Cells. International Journal of Applied Mathematics Electronics and Computers, 3(3), 189-193. https://doi.org/10.18100/ijamec.77967
AMA Nafissa A, Boualem H. Automatic System for Classification of Precipitation Cells. International Journal of Applied Mathematics Electronics and Computers. Haziran 2015;3(3):189-193. doi:10.18100/ijamec.77967
Chicago Nafissa, Azzaz, ve Haddad Boualem. “Automatic System for Classification of Precipitation Cells”. International Journal of Applied Mathematics Electronics and Computers 3, sy. 3 (Haziran 2015): 189-93. https://doi.org/10.18100/ijamec.77967.
EndNote Nafissa A, Boualem H (01 Haziran 2015) Automatic System for Classification of Precipitation Cells. International Journal of Applied Mathematics Electronics and Computers 3 3 189–193.
IEEE A. Nafissa ve H. Boualem, “Automatic System for Classification of Precipitation Cells”, International Journal of Applied Mathematics Electronics and Computers, c. 3, sy. 3, ss. 189–193, 2015, doi: 10.18100/ijamec.77967.
ISNAD Nafissa, Azzaz - Boualem, Haddad. “Automatic System for Classification of Precipitation Cells”. International Journal of Applied Mathematics Electronics and Computers 3/3 (Haziran 2015), 189-193. https://doi.org/10.18100/ijamec.77967.
JAMA Nafissa A, Boualem H. Automatic System for Classification of Precipitation Cells. International Journal of Applied Mathematics Electronics and Computers. 2015;3:189–193.
MLA Nafissa, Azzaz ve Haddad Boualem. “Automatic System for Classification of Precipitation Cells”. International Journal of Applied Mathematics Electronics and Computers, c. 3, sy. 3, 2015, ss. 189-93, doi:10.18100/ijamec.77967.
Vancouver Nafissa A, Boualem H. Automatic System for Classification of Precipitation Cells. International Journal of Applied Mathematics Electronics and Computers. 2015;3(3):189-93.