Year 2025,
Volume: 06 Issue: 02, 91 - 105
Turan Konyalıoğlu
Sinan Alnıpak
,
Halil İbrahim Şahin
Erdinç Altuğ
References
-
3D printing industry, Royal Navy Launches the first 3D printed airplane, 3D-printing-industry, 2016, available at: https://3dprintingindustry.com/news/royal-navy-launches-first-3d-printed-airplane-76767 (accessed 4 October 2024).
-
Ackerman, E., & Strickland, E., 2018. Medical delivery drones take flight in East Africa. IEEE Spectrum, 55, 34-35.
-
Ahmed, N.A., Page, J.R., 2013. Manufacture of an Unmanned Aerial Vehicle (UAV) for Advanced Project Design Using 3D Printing Technology. AMM, 397–400, 970–980. https://doi.org/10.4028/www.scientific.net/amm.397-400.970
-
Aktas, Y.O., Ozdemir, U., Dereli, Y. et al., 2016. Rapid Prototyping of a Fixed-Wing VTOL UAV for Design Testing. J Intell Robot Syst, 84, 639–664.
-
Alves, P., Silvestre, M. A., & Rodrigues, A., 2021, Assessment of Low Cost FDM 3D Printing in Low Reynolds Number Propeller Prototyping. AIAA Propulsion and Energy 2021 Forum.
-
Baker, A. A.,2004. Composite materials for aircraft structures. AIAA.
-
Banfield P. B. 2013. Design and Development of a 3D Printed UAV, Bachelor of Science in Aerospace Engineering Thesis Study, Oklahoma State University.
-
Biswas, P. & Li, J. & Heryudono, A. & Bi, J., 2018. Prediction of Printing Failure of a 3D Printed Drone Propeller using Fused Deposition Modeling. Conference Science in the Age of Experience.
-
Boutilier, J. J., Brooks, S. C., Janmohamed, A., Byers, A., Buick, J. E., Zhan, C., Schoellig, A. P., Cheskes, S., Morrison, L. J., & Chan, T. C. Y., 2017. Optimizing a drone network to deliver automated external defibrillators. Circulation, 135, 2454-2465.
-
Chaturvedi, S.K. and Sekhar, R. and Banerjee, S., and Kamal, H., 2019, Comparative review study of military and civilian unmanned aerial vehicles (UAVs). In: INCAS Bulletin, 11 (3). pp. 181-182.
-
Çetinsoy, E., Dikyar, S., Hançer, C., Oner, K. T., Sirimoglu, E., Unel, M., & Aksit, M. F., 2012. Design and construction of a novel quad tilt-wing UAV. Mechatronics, 22(6), 723-745.
-
De Silvestri, S.; Capasso, P.J.; Gargiulo, A.; Molinari, S.; Sanna, A., 2023. Challenges for the Routine Application of Drones in Healthcare: A Scoping Review. Drones, 7, 685.
-
Drela, M., & Youngren, H., 2013. XFOIL Subsonic Airfoil Development System. Retrieved from https://web.mit.edu/drela/Public/web/xfoil/(accessed 4 October 2024).
-
Esakki, B., Sagar, N., Chandrasekhar, U., Salunkhe, S., 2019. Development of light weight multi-rotor UAV structures through synergistic application of design analysis and fused deposition modelling. International Journal of Materials and Product Technology. 59. 229-238. 10.1504/IJMPT.2019.10024474.
-
DHL trend report, Aerial Vehicles in logistics a DHL Perspective on implications and use cases for the logistics industry, available at: https://www.dhl.com/discover/content/dam/dhl/downloads/interim/preview/updates/dhl-trend-report-uav-preview.pdf (accessed 4 October 2024).
-
Ferro, C., Grassi, R., Seclì, C., & Maggiore, P., 2016. Additive manufacturing offers new opportunities in UAV research. Procedia CIRP, 41, 1004-1010.
-
Goh, G.D. & Agarwala, S. & Goh, G. L. & Dikshit, V. & Sing, S. L. & Yeong, W. Y., 2017. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology. 63. 140-151. 10.1016/j.ast.2016.12.019.
-
Hissa, L., Mothé, J.E.M., 2018. Development of an Autonomous UAV, 10.26678/ABCM.CONEM2018.CON18-1600.
-
Kellermann, R., Biehle, T., & Fischer, L., 2020. Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Perspectives, 4, 100088.
-
Klippstein, H., Diaz De Cerio Sanchez, A., Hassanin, H., Zweiri, Y. and Seneviratne, L., 2018, Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review. Adv. Eng. Mater., 20: 1700552.
-
Jansen, H., 2024. Impact of Toroidal Propeller Design on Unmanned Aerial Vehicle Acoustic Signature and Aerodynamic Performance. International Journal of Aerospace Engineering (IJASE) 2.1.
-
Koetsier, J. Drone delivery is live today, and it’s 90% cheaper than car-based services, Forbes, 2021, https://www.forbes.com/sites/johnkoetsier/2021/08/18/drone-delivery-is-live-today-and-its-90-cheaper-than-car-based-services/?sh=2fdce1194d02.
-
Li, Y.; Liu, M.; Jiang, D., 2022. Application of Unmanned Aerial Vehicles in Logistics: A Literature Review. Sustainability 2022, 14, 14473. https://doi.org/10.3390/su142114473.
-
Lyu, M.; Zhao, Y.; Huang, C.; Huang, H., 2023. Unmanned Aerial Vehicles for Search and Rescue: A Survey. Remote Sens. 2023, 15, 3266. https://doi.org/10.3390/rs15133266.
-
Marks, P., 2011. 3D printing: The world’s first printed plane, available at: http://www.newscientist.com/article/dn20737- 3d-printing-the-worlds-first-printed-plane.html?full=true#.VBWAqfn-N8E (accessed 4 October 2024).
-
Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., & Alcaraz-Calero, J. M., 2021. Search and rescue operation using UAVs: A case study. Expert Systems with Applications, 178, 114937.
-
McIlhagger, A., Archer, E., & McIlhagger, R., 2020. Manufacturing processes for composite materials and components for aerospace applications. Polymer composites in the aerospace industry, (pp. 59-81). Woodhead Publishing.
-
McKinnon A., 2016, The Possible Impact of 3D Printing and Drones on Last-Mile Logistics: An Exploratory study, Built Environment, 42 (4), pp 576-588.
-
MIT, 2023. A Technology Highlight Toroidal Propeller, MIT Lincoln Laboratory, available at: https://www.ll.mit.edu/sites/default/files/other/doc/2023-02/TVO_Technology_Highlight_41_Toroidal_Propeller.pdf (accessed 4 October 2024).
-
Mohsan, S.A.H., Othman, N.Q.H., Li, Y. et al., 2023. Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intel Serv Robotics, 16, 109–137. https://doi.org/10.1007/s11370-022-00452-4
-
Moon, S., Tan, Y., Hwang, J., Yoon, Y., 2014. Application of 3D Printing Technology for Designing Light-weight Unmanned Aerial Vehicle Wing Structures. International Journal of Precision Engineering and Manufacturing-Green Technology. 1. 223-228. 10.1007/s40684-014-0028-x.
-
Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I., 2020. A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148.
-
Rajendran, S., & Srinivas, S., 2020. Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities. Transportation Research Part E: Logistics and Transportation Review, 143, 102090.
-
Sebastian, T. and Strem, C., 2017, Toroidal propeller, US Patent US10836466B2.
-
Shahrubudin, N., Lee, T. C., & Ramlan, R., 2019. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286-1296.
-
SimScale GmbH, 2022. Simscale. Retrieved from https://www.simscale.com/ (accessed 4 October 2024).
-
Smirnov, A., Smolokurov, E., Bolshakov, R., & Parshin, V., 2023. Problems and prospects for the development of urban air mobility on the basis of unmanned transport systems. Transportation Research Procedia, 68, 151-159.
-
Srivastava, A., Prakash, J., 2023. Techniques, Answers, and Real-World UAV Implementations for Precision Farming. Wireless Pers Commun, 131, 2715–2746.
-
Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W., 2023. A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs). Systems, 11, 400. https://doi.org/10.3390/systems11080400.
-
Yap, Y. L., Toh, W., Giam, A., Yong, F. R., Chan, K. I., Tay, J. W. S., Teong, S. S., Lin, R., & Ng, T. Y., 2023. Topology optimization and 3D printing of micro-drone: Numerical design with experimental testing. International Journal of Mechanical Sciences, 237, 107771.
-
Zlatan R., 2021. Rapid prototyping with fiber composites - Manufacturing of an amphibious UAV Master’s thesis, KTH Royal Institute of Technology School of Engineering Sciences, TRITA-SCI-GRU 2021:340.
Integrating Additive Manufacturing and Composite Manufacturing Techniques to Build a General-Purpose UAV
Year 2025,
Volume: 06 Issue: 02, 91 - 105
Turan Konyalıoğlu
Sinan Alnıpak
,
Halil İbrahim Şahin
Erdinç Altuğ
Abstract
The development of unmanned aerial vehicles (UAVs) and their integration into our daily lives has been rapidly accelerating in recent years. Despite these advancements, the production of UAVs often necessitates specialized and costly equipment. However, with the rapid evolution of 3D printing technologies, it is possible to build and fly UAVs. This study investigates the feasibility of employing 3D printing for the manufacturing of a 3.8-meter wingspan hybrid UAV. The system comprises two components: a hybrid aircraft and a parachute drone carried by the hybrid aircraft. Following the mechanical and aerodynamic design of the air vehicle, it was fabricated using a rapid prototyping approach, incorporating 3D printing and composite production techniques. This study demonstrates that even large-scale aircraft can be produced with limited laboratory facilities and minimal equipment. It is anticipated that this approach can make UAV production more accessible to the general public, potentially accelerating the development of UAV technology.
Ethical Statement
There are no ethical concerns raised by this article.
Supporting Institution
The Scientific and Technological Research Council of Turkey (TÜBİTAK)
Thanks
The authors would like to thank Vedat Ali Aksu for his help in manufacturing the prototype.
References
-
3D printing industry, Royal Navy Launches the first 3D printed airplane, 3D-printing-industry, 2016, available at: https://3dprintingindustry.com/news/royal-navy-launches-first-3d-printed-airplane-76767 (accessed 4 October 2024).
-
Ackerman, E., & Strickland, E., 2018. Medical delivery drones take flight in East Africa. IEEE Spectrum, 55, 34-35.
-
Ahmed, N.A., Page, J.R., 2013. Manufacture of an Unmanned Aerial Vehicle (UAV) for Advanced Project Design Using 3D Printing Technology. AMM, 397–400, 970–980. https://doi.org/10.4028/www.scientific.net/amm.397-400.970
-
Aktas, Y.O., Ozdemir, U., Dereli, Y. et al., 2016. Rapid Prototyping of a Fixed-Wing VTOL UAV for Design Testing. J Intell Robot Syst, 84, 639–664.
-
Alves, P., Silvestre, M. A., & Rodrigues, A., 2021, Assessment of Low Cost FDM 3D Printing in Low Reynolds Number Propeller Prototyping. AIAA Propulsion and Energy 2021 Forum.
-
Baker, A. A.,2004. Composite materials for aircraft structures. AIAA.
-
Banfield P. B. 2013. Design and Development of a 3D Printed UAV, Bachelor of Science in Aerospace Engineering Thesis Study, Oklahoma State University.
-
Biswas, P. & Li, J. & Heryudono, A. & Bi, J., 2018. Prediction of Printing Failure of a 3D Printed Drone Propeller using Fused Deposition Modeling. Conference Science in the Age of Experience.
-
Boutilier, J. J., Brooks, S. C., Janmohamed, A., Byers, A., Buick, J. E., Zhan, C., Schoellig, A. P., Cheskes, S., Morrison, L. J., & Chan, T. C. Y., 2017. Optimizing a drone network to deliver automated external defibrillators. Circulation, 135, 2454-2465.
-
Chaturvedi, S.K. and Sekhar, R. and Banerjee, S., and Kamal, H., 2019, Comparative review study of military and civilian unmanned aerial vehicles (UAVs). In: INCAS Bulletin, 11 (3). pp. 181-182.
-
Çetinsoy, E., Dikyar, S., Hançer, C., Oner, K. T., Sirimoglu, E., Unel, M., & Aksit, M. F., 2012. Design and construction of a novel quad tilt-wing UAV. Mechatronics, 22(6), 723-745.
-
De Silvestri, S.; Capasso, P.J.; Gargiulo, A.; Molinari, S.; Sanna, A., 2023. Challenges for the Routine Application of Drones in Healthcare: A Scoping Review. Drones, 7, 685.
-
Drela, M., & Youngren, H., 2013. XFOIL Subsonic Airfoil Development System. Retrieved from https://web.mit.edu/drela/Public/web/xfoil/(accessed 4 October 2024).
-
Esakki, B., Sagar, N., Chandrasekhar, U., Salunkhe, S., 2019. Development of light weight multi-rotor UAV structures through synergistic application of design analysis and fused deposition modelling. International Journal of Materials and Product Technology. 59. 229-238. 10.1504/IJMPT.2019.10024474.
-
DHL trend report, Aerial Vehicles in logistics a DHL Perspective on implications and use cases for the logistics industry, available at: https://www.dhl.com/discover/content/dam/dhl/downloads/interim/preview/updates/dhl-trend-report-uav-preview.pdf (accessed 4 October 2024).
-
Ferro, C., Grassi, R., Seclì, C., & Maggiore, P., 2016. Additive manufacturing offers new opportunities in UAV research. Procedia CIRP, 41, 1004-1010.
-
Goh, G.D. & Agarwala, S. & Goh, G. L. & Dikshit, V. & Sing, S. L. & Yeong, W. Y., 2017. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerospace Science and Technology. 63. 140-151. 10.1016/j.ast.2016.12.019.
-
Hissa, L., Mothé, J.E.M., 2018. Development of an Autonomous UAV, 10.26678/ABCM.CONEM2018.CON18-1600.
-
Kellermann, R., Biehle, T., & Fischer, L., 2020. Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Perspectives, 4, 100088.
-
Klippstein, H., Diaz De Cerio Sanchez, A., Hassanin, H., Zweiri, Y. and Seneviratne, L., 2018, Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review. Adv. Eng. Mater., 20: 1700552.
-
Jansen, H., 2024. Impact of Toroidal Propeller Design on Unmanned Aerial Vehicle Acoustic Signature and Aerodynamic Performance. International Journal of Aerospace Engineering (IJASE) 2.1.
-
Koetsier, J. Drone delivery is live today, and it’s 90% cheaper than car-based services, Forbes, 2021, https://www.forbes.com/sites/johnkoetsier/2021/08/18/drone-delivery-is-live-today-and-its-90-cheaper-than-car-based-services/?sh=2fdce1194d02.
-
Li, Y.; Liu, M.; Jiang, D., 2022. Application of Unmanned Aerial Vehicles in Logistics: A Literature Review. Sustainability 2022, 14, 14473. https://doi.org/10.3390/su142114473.
-
Lyu, M.; Zhao, Y.; Huang, C.; Huang, H., 2023. Unmanned Aerial Vehicles for Search and Rescue: A Survey. Remote Sens. 2023, 15, 3266. https://doi.org/10.3390/rs15133266.
-
Marks, P., 2011. 3D printing: The world’s first printed plane, available at: http://www.newscientist.com/article/dn20737- 3d-printing-the-worlds-first-printed-plane.html?full=true#.VBWAqfn-N8E (accessed 4 October 2024).
-
Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., & Alcaraz-Calero, J. M., 2021. Search and rescue operation using UAVs: A case study. Expert Systems with Applications, 178, 114937.
-
McIlhagger, A., Archer, E., & McIlhagger, R., 2020. Manufacturing processes for composite materials and components for aerospace applications. Polymer composites in the aerospace industry, (pp. 59-81). Woodhead Publishing.
-
McKinnon A., 2016, The Possible Impact of 3D Printing and Drones on Last-Mile Logistics: An Exploratory study, Built Environment, 42 (4), pp 576-588.
-
MIT, 2023. A Technology Highlight Toroidal Propeller, MIT Lincoln Laboratory, available at: https://www.ll.mit.edu/sites/default/files/other/doc/2023-02/TVO_Technology_Highlight_41_Toroidal_Propeller.pdf (accessed 4 October 2024).
-
Mohsan, S.A.H., Othman, N.Q.H., Li, Y. et al., 2023. Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intel Serv Robotics, 16, 109–137. https://doi.org/10.1007/s11370-022-00452-4
-
Moon, S., Tan, Y., Hwang, J., Yoon, Y., 2014. Application of 3D Printing Technology for Designing Light-weight Unmanned Aerial Vehicle Wing Structures. International Journal of Precision Engineering and Manufacturing-Green Technology. 1. 223-228. 10.1007/s40684-014-0028-x.
-
Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I., 2020. A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148.
-
Rajendran, S., & Srinivas, S., 2020. Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities. Transportation Research Part E: Logistics and Transportation Review, 143, 102090.
-
Sebastian, T. and Strem, C., 2017, Toroidal propeller, US Patent US10836466B2.
-
Shahrubudin, N., Lee, T. C., & Ramlan, R., 2019. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286-1296.
-
SimScale GmbH, 2022. Simscale. Retrieved from https://www.simscale.com/ (accessed 4 October 2024).
-
Smirnov, A., Smolokurov, E., Bolshakov, R., & Parshin, V., 2023. Problems and prospects for the development of urban air mobility on the basis of unmanned transport systems. Transportation Research Procedia, 68, 151-159.
-
Srivastava, A., Prakash, J., 2023. Techniques, Answers, and Real-World UAV Implementations for Precision Farming. Wireless Pers Commun, 131, 2715–2746.
-
Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W., 2023. A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs). Systems, 11, 400. https://doi.org/10.3390/systems11080400.
-
Yap, Y. L., Toh, W., Giam, A., Yong, F. R., Chan, K. I., Tay, J. W. S., Teong, S. S., Lin, R., & Ng, T. Y., 2023. Topology optimization and 3D printing of micro-drone: Numerical design with experimental testing. International Journal of Mechanical Sciences, 237, 107771.
-
Zlatan R., 2021. Rapid prototyping with fiber composites - Manufacturing of an amphibious UAV Master’s thesis, KTH Royal Institute of Technology School of Engineering Sciences, TRITA-SCI-GRU 2021:340.