Characterization of Polyamide (PA-6) Processed at Different Parameters on the Sliding Automatic Machine
Year 2025,
Volume: 9 Issue: 4, 568 - 575, 31.12.2025
İhsan Küçükrendeci
,
Abdullah Taha Akgül
,
Muhammet Öztürk
,
Günhan Bayrak
Abstract
In this study, the surface roughness, hardness, and microstructure of polyamide (PA6), a widely used material in the manufacturing industry, were compared with machined PA6 under different machining parameters on a sliding automatic lathe. A model used in the automotive industry was selected as a sample, and the experiments were conducted in a laboratory environment at room temperature. The cutting tool and coolant were set as constant parameters throughout the production process. Surface roughness and Shore-D hardness measurements were first applied to non-machined samples. The same measurements were also applied to samples machined on a sliding automatic lathe at different speeds and feed rates. Both non-machined and machined samples were then characterized by scanning electron microscope (SEM) images and surface XRD patterns. The surface roughness of untreated PA6 samples was found to be 0.20 ± 0.02, while it varied between 1.40 and 1.28 for samples machined at low feed rates and between 8.42 and 8.27 for samples machined at high feed rates. The hardness values of the untreated PA6 sample were found to be 78 ± 1 Shore-D, while the hardness values of the treated samples ranged from 71.17 to 75.17. Experimental studies revealed that there was no significant change in XRD patterns and hardness values during the production process, but quite significant differences were observed in surface roughness and SEM images.
References
-
[1] Çakmakkaya M, Kunt M, Terzi O. Investigation of Polymer Matrix Metarials in Automotive Consoles. Internatıonal Journal Of Automotive Science And Technology. 2019;3(3):51-6. https://doi.org/10.30939/ijastech..513332
-
[2] Callister W., Rethwisch D., Materials Science and Engineering, Nobel Yayınevi, 2013
-
[3] Groover, M.P., Principles of Modern Manufacturing, Nobel Yayınevi, 2016
-
[4] Arda E., The Evolution of Manufacturing Technologies: From Tra-ditional to Smart Manufacturing, All Sciences Academy,2025
-
[5] Ünal H, Mimaroglu A. Friction and wear performance of polyam-ide 6 and graphite and wax polyamide 6 composites under dry sliding conditions. Wear. 2012;289:132–7. https://doi.org/10.1016/j.wear.2012.04.004
-
[6] Gnatowski A, Gołębski R, Stachowiak K. Effect of Processing Conditions on Selected Properties of Polyamide 6 Composites filled by Modified Bentonite. Arch. Metall. Mater. 2021;66(2):483-7. https://doi.org/10.24425/amm.2021.135882
-
[7] Ünal H, Yetgin S. Polimaid 6 Polimeri ile Poliamid6/Vaks Karışımının Kendi Üzerlerinde Çalışması Durumundaki Dav-ranışlarının İncelenmesi. Gazi Üniv. Müh. Mim. Fak. Der. 2016;31(2):457-63.https://doi.org/10.17341/gummfd.27962
-
[8] Acır A. Talaş kaldırma işlemlerinde yüzey pürüzlülüğüne etki eden faktörlerin incelenmesi. II. Makine Tasarım ve İmalat Kon-gresi; 2003; Konya, Türkiye. p. 209–16.
-
[9] Tonshoff HK, Arendt C, Ben AR. Cutting Of Hardened Steel. An.of CIRP. 2000;49(2):547-66. https://doi.org/10.1016/S0007-8506(07)63455-6
-
[10] Özel T, Karpat Y. Predictive Modeling Of Surface Roughness And Tool Wear In Hard Turning Using Regression And Neural networks. International Journal of Machine Tools & Manufacture. 2005;45:467-79.. https://doi.org/10.1016/j.ijmachtools.2004.09.007
-
[11] Palanikumar K, Rajasekaran T, Latha B. Fuzzy rule-based model-ing of machining parameters for surface roughness in turning car-bon particle-reinforced polyamide. Journal of Thermoplastic Composite Materials. 2015;28(10):1387-405. https://doi.org/10.1177/0892705713513282
-
[12] Aksulu M, Palabıyık M. Poliamid 6’nın aşınmasında karşı yüzey pürüzlülüğünün etkisi. İTÜ Dergisi/mühendislik. 2009;8(2):63–71..
-
[13] Bozdemir M. Prediction of Surface Roughness considering Cutting Parameters and Humidity Condition in End Milling of Polyamide Materials. All Articles. 2018:1. https://doi.org/10.1155/2018/5850432
-
[14] Bozdemir M. Polyamid Malzemelerde Yüzey Pürüzlüğünün Belirlenmesi İçin Yapay Zeka Destekli Bir Uygulama Tasarımı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2019;7:136-46. https://doi.org/10.29130/dubited.419437
-
[15] Yıldırım R. Investigation of effects of MoEpPOSS nanoparticle on the morphological and rheological properties of PA6/TPE blends. J. Innovative Eng. Nat. Sci. 2024;4(2):289-97 https://doi.org/10.61112/jiens.1405425
-
[16] Savaş L. Effect of Bone Ash and Compatıbılızer On The Mechanıcal Properties Of PP/PA6 Matrix Composıtes. Interna-tional Journal of Innovative Engineering Applications. 2022;6:1: 118-128 https://doi.org/10.46460/ijiea.1065103
-
[17] Ünal H, Yetgin S. PA6/PTFE Karışımlarının Tribolojik Perfor-manslarının İncelenmesi. Technological Applied Sciences (NWSATAS). 2018;13(2):89-97. https://doi.org/10.12739/NWSA.2018.13.2.2A0139
-
[18] Foulger SH. [Title not specified in source]. Journal of Polymer Science, Polymer Phys. 1999;37:1899-910. https://doi.org/10.1002/(SICI)1099-0488(19990801)37:15<1899::AID-POLB14>3.3.CO;2-S
-
[19] Bayrak G. Wear properties of gabbro based glass and glass-Ceramic materials. Acta Physica Polonica A. 2014;125(2):615–617.https://doi.org/10.12693/APhysPolA.125.615
-
[20] Manzak A, Yıldız Y, Tutkun O. Characterization of polymer inclusion membrane containing Aliquat 336 as a carrier. Mem-brane Water Treatment. 2015;6(2):95-102 https://doi.org/10.12989/mwt.2015.6.2.095
-
[21] Demirkiran AS, Yilmaz S, Sen U. Fracture toughness of glass-ceramics produced from power plant fly ash. Journal of Ceramic Processing Research. 2013;14(1):51–5.
-
[22] Ercenk E, Sen U, Bayrak G, Yilmaz S. Glass and glass-ceramics produced from fly ash and boron waste. Acta Physica Polonica A. 2014;125(2):626–8. https://doi.org/10.12693/APhysPolA.125.626
-
[23] Yılmaz S, Bayrak G, Sen S, Sen U. Structural characterization of basalt-based glass–ceramic coatings. Materials & Design. 2006;27(10):1092-6. https://doi.org/10.1016/j.matdes.2005.04.004
-
[24] Wang MY, Chang HY. Experimental Study Of Surface Rough-ness In Slot End Milling. International Journal of Machine Tools & Manufacture.2004;44:51-7 https://doi.org/10.1016/j.ijmachtools.2003.08.011
-
[25] Memiş F, Turgut Y. AISI 2205 Dubleks Paslanmaz Çeliğin CNC Torna Tezgahında İşlenmesinde Yüzey Pürüzlülüğü ve Kesme Kuvvetlerinin Deneysel Araştırılması. Manufacturing Technolo-gies and Applications. 2020;1(1):22-33. Available from https://dergipark.org.tr/tr/pub/mateca/issue/54121/724337.
-
[26] Kuram E. Micro-machinability of injection molded poly-amide 6 polymer and glass-fiber reinforced polyamide 6 composite. Com-posites Part B. 2016;88:85-100. https://doi.org/10.1016/j.compositesb.2015.11.004
-
[27] Bharathi S. Multi objective optimization of CNC turning process parameters with Acrylonitrile Butadiene Styrene material. Materi-als Today: Proceedings. 2020;27:2042–7. https://doi.org/10.1016/j.matpr.2019.09.055
-
[28] Kumar SS, Kanagaraj G. Investigation on Mechanical and Tribo-logical Behaviors of PA6 and Graphite-Reinforced PA6 Poly-mer Composites. Arabian Journal for Science Engineering. 2016;44(11). https://doi.org/10.1007/s13369-016-2126-2
-
[29] Gaitonde VN, Karnik SR, Silva LR, Abrão AM, Davim JP. Machinability Study in MicroTurning of PA66 GF30 Poliamide with a PCD Tool. 2009. p. 1290-6. https://doi.org/10.1080/10426910903130115
-
[30] Pernas A, Clemente L, Fonte X. Water sorption of PA12/PA6/MWCNT composites with a segregated conductive network: structure– property relationships. J.Mater Sci. 2016. https://doi.org/10.1007/s10853-016-0127-x
-
[31] Kobayashi D, Takahara A. Interphase crystal structure of polyam-ide 6 on carbon materials revealed by grazing incidence X-ray dif-fraction with synchrotron radiation; Polymer. Wear. 2016;97:174-8.https://doi.org/10.1016/j.polymer.2016.05.028
-
[32] Zhou S, Zhang Q, Huang J. Friction and wear behaviors of polyamide-based composites blended with polyphenylene sulfide. Journal of Thermoplastic Composite Materials. 2012 https://doi.org/10.1177/0892705712461516
-
[33] Mindivan F. Poliamid 6/Grefen Nanotabakalı (PA6/GNP) Kompozitlerin Termo-Mekanik Özelliklerinin Karakterizasyonu. ÖHÜ Müh. Bilim. Derg. 2018;7(1):443-50. https://doi.org/10.28948/ngumuh.3686
-
[34] Akkurt S. Plastik Malzeme Bilimi Teknolojisi ve Kalıp Tasarımı. İstanbul: Birsen Yayınevi; 2007.