Review
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 4, 316 - 330, 31.12.2021
https://doi.org/10.30939/ijastech..958368

Abstract

Supporting Institution

İNÖNÜ ÜNİVERSİTESİ

Project Number

FOA-2018-1358

Thanks

Bu çalışmanın gerçekleştirilmesinde, FOA-2018-1358 numaralı projesi kapsamında, vermiş oldukları maddi ve manevi destekten dolayı, İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine teşekkür ederiz.

References

  • [1] T. H. E. Stern, S. Ngs, and O. F. Iron, “THE ENGINEE : lt .,” 1888.
  • [2] I. S. It, A. P. In, and O. U. R. Fa, “Notes. · • 3,.”
  • [3] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 1, pp. 3–10, 2013, doi: 10.1109/JESTPE.2013.2259614.
  • [4] Wikipedia, “EV1,” 2020. [Online]. Available: https://tr.wikipedia.org/wiki/EV1.
  • [5] Ching Chuen Chan, “THE RISE & FALL OF ELECTRIC,” Proc. IEEE, vol. 101, no. 1, pp. 206–212, 2013.
  • [6] Y. E. Ekici, “BATARYA YÖNETİM SİSTEMLERİ,” 2019.
  • [7] International Energy Agency (IEA), “Global EV Outlook 2020: Entering the decade of electric drive?,” Glob. EV Outlook 2020, p. 273, 2020.
  • [8] “Global energy & CO2 status report 2017.” [Online]. Available: https://scholar.google.com/scholar?cluster=971223945886245125&hl=tr&as_sdt=2005&sciodt=0,5.
  • [9] T. He, Y. Bai, and J. Zhu, “Optimal charging strategy of electric vehicles customers in a smart electrical car park,” IET Conf. Publ., vol. 2016, no. CP684, pp. 3–8, 2016, doi: 10.1049/cp.2016.0298.
  • [10] S. Shariff, M. S. Alam, S. Khan, M. S. Shemami, and F. Sayeed, “A review on sustainable xEV charging system in sun rich nations,” 2018 Int. Conf. Comput. Power Commun. Technol. GUCON 2018, pp. 1042–1048, 2019, doi: 10.1109/GUCON.2018.8674905.
  • [11] U. Yilmaz, O. Turksoy, and A. Teke, “Intelligent control of high energy efficient two-stage battery charger topology for electric vehicles,” Energy, vol. 186, p. 115825, 2019, doi: 10.1016/j.energy.2019.07.155.
  • [12] V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. Van den Bossche, and L. Boon-Brett, “A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles,” Renew. Sustain. Energy Rev., vol. 81, no. April, pp. 1427–1452, 2018, doi: 10.1016/j.rser.2017.05.195.
  • [13] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 763–770, 2005, doi: 10.1109/TVT.2005.847445.
  • [14] M. M. Hoque, M. A. Hannan, A. Mohamed, and A. Ayob, “Battery charge equalization controller in electric vehicle applications: A review,” Renew. Sustain. Energy Rev., vol. 75, no. November, pp. 1363–1385, 2017, doi: 10.1016/j.rser.2016.11.126.
  • [15] Ç. DERİCİOĞLU, E. YİRİK, E. ÜNAL, M. U. CUMA, B. ONUR, and M. TÜMAY, “a Review of Charging Technologies for Commercial Electric Vehicles,” Int. J. Adv. Automot. Technol., no. June 2019, 2018, doi: 10.15659/ijaat.18.01.892.
  • [16] A. V. J. S. Praneeth and S. S. Williamson, “A Review of Front End AC-DC Topologies in Universal Battery Charger for Electric Transportation,” 2018 IEEE Transp. Electrif. Conf. Expo, ITEC 2018, pp. 916–921, 2018, doi: 10.1109/ITEC.2018.8450186.
  • [17] I. Wagner, “Worldwide number of battery electric vehicles in use from 2012 to 2018.” [Online]. Available: https://www.statista.com/statistics/270603/worldwide-number-of-hybrid-and-electric-vehicles-since-2009/.
  • [18] A YOUNG, “Global Electric Car Market: About 43% Of All Electric Passenger Cars Were Bought In 2014, Say German Clean Energy Researchers.” [Online]. Available: https://scholar.google.com/scholar_lookup?title=Global Electric Car Market%3A about 43%25 of all electric passenger cars were bought in 2014&author=A. Young&publication_year=2015.
  • [19] insideevs, “FINAL UPDATE: Quarterly Plug-In EV Sales Scorecard.” [Online]. Available: https://insideevs.com/news/343998/monthly-plug-in-ev-sales-scorecard/.
  • [20] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151–2169, 2013, doi: 10.1109/TPEL.2012.2212917.
  • [21] J. Xiaoping, “A new AC charging system with orderly charging for electric vehicles,” 2013 5th Int. Conf. Power Electron. Syst. Appl. PESA 2013, pp. 1–4, 2013, doi: 10.1109/PESA.2013.6828230.
  • [22] 吕常智, “The Design of Electric Vehicle Charging Pile Energy Reversible,” Smart Grid, vol. 7, no. 2, pp. 59–66, 2017, doi: 10.12677/sg.2017.72007.
  • [23] Z. Zheng, T. Liu, Y. Zhang, and X. Cheng, “Analysis on development trend of electric vehicle charging mode,” ICEOE 2011 - 2011 Int. Conf. Electron. Optoelectron. Proc., vol. 1, no. Iceoe, pp. 440–442, 2011, doi: 10.1109/ICEOE.2011.6013139.
  • [24] Y. Gao, X. Zhang, Q. Cheng, B. Guo, and J. Yang, “Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries,” IEEE Access, vol. 7, pp. 43511–43524, 2019, doi: 10.1109/ACCESS.2019.2906117.
  • [25] J. He, H. Yang, H. J. Huang, and T. Q. Tang, “Impacts of wireless charging lanes on travel time and energy consumption in a two-lane road system,” Phys. A Stat. Mech. its Appl., vol. 500, pp. 1–10, 2018, doi: 10.1016/j.physa.2018.02.074.
  • [26] J. C. K. Pappas, “a New Prescription for Electric Cars.,” Energy Law J., vol. 35, no. 1, pp. 151–198, 2014.
  • [27] T. Bräunl, “EV Charging Standards,” pp. 1–5, 2012.
  • [28] Y. E. Wu, “Design and implementation of AC conductive charging system for electrical vehicles,” 2019 2nd Int. Conf. Electron. Technol. ICET 2019, pp. 282–288, 2019, doi: 10.1109/ELTECH.2019.8839585.
  • [29] SAE, “SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler.” [Online]. Available: https://www.sae.org/standards/content/j1772_201710/.
  • [30] T. Bohn, “Vehicle Charging ; Low Level AC To DC Extreme Fast Charging For Commercial Vehicles,” pp. 1–6, 2019.
  • [31] CHAdeMO, “Electric Vehicle Quick Charger Installation and Operation Manual,” 2010.
  • [32] F. Deflorio, P. Guglielmi, I. Pinna, L. Castello, and S. Marfull, “Modeling and analysis of wireless ‘charge while driving’ operations for fully electric vehicles,” Transp. Res. Procedia, vol. 5, pp. 161–174, 2015, doi: 10.1016/j.trpro.2015.01.008.
  • [33] J. Channegowda, V. K. Pathipati, and S. S. Williamson, “Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency,” IEEE Int. Symp. Ind. Electron., vol. 2015–Septe, pp. 263–268, 2015, doi: 10.1109/ISIE.2015.7281479.
  • [34] Wikipedia, “SAE J1772,” 2020. [Online]. Available: https://en.wikipedia.org/wiki/SAE_J1772.
  • [35] SAE, “J1772_201001,” SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler, 2010. [Online]. Available: https://www.sae.org/standards/content/j1772_201001/.
  • [36] P. Karlsson and J. Svensson, “DC Bus Voltage Control for a Distributed Power System,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1405–1412, 2003, doi: 10.1109/TPEL.2003.818872.
  • [37] SAE, “Charging – what can be more simple?” [Online]. Available: https://www.sae.org/binaries/content/assets/cm/content/standards/chargingprimer.pdf.
  • [38] TE Connectivity, “SAE J1772 Electric Vehicle Charge Connector Cable Assembly,” 2015.
  • [39] Jeff Plungis, “How the Electric Car Charging Network Is Expanding.” [Online]. Available: https://www.consumerreports.org/hybrids-evs/electric-car-charging-network-is-expanding/.
  • [40] B. Bart, “Level 1 and Level 2 Electric Vehicle Service Equipment ( EVSE ) Reference Design,” 2016.
  • [41] E. N. America and A. Phoenix, “Lessons Learned – The EV Project DC Fast Charge - Demand Charge Reduction Prepared for the U . S . Department of Energy Award # DE-EE0002194,” 2012.
  • [42] D. McPhail, “Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response,” Renew. Energy, vol. 67, pp. 103–108, 2014, doi: 10.1016/j.renene.2013.11.023.
  • [43] R. H. Ashique, Z. Salam, M. J. Bin Abdul Aziz, and A. R. Bhatti, “Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control,” Renew. Sustain. Energy Rev., vol. 69, no. October 2016, pp. 1243–1257, 2017, doi: 10.1016/j.rser.2016.11.245.
  • [44] T. Harighi, R. Bayindir, S. Padmanaban, L. Mihet-Popa, and E. Hossain, “An overview of energy scenarios, storage systems and the infrastructure for Vehicle-to-Grid technology,” Energies, vol. 11, no. 8, pp. 1–18, 2018, doi: 10.3390/en11082174.
  • [45] A. Ahmad, M. S. Alam, and R. Chabaan, “A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles,” IEEE Trans. Transp. Electrif., vol. 4, no. 1, pp. 38–63, 2017, doi: 10.1109/TTE.2017.2771619.
  • [46] K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, “Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques,” Renew. Sustain. Energy Rev., vol. 53, pp. 720–732, 2016, doi: 10.1016/j.rser.2015.09.012.
  • [47] A. K. Singh and M. K. Pathak, “A Comprehensive Review of Integrated Charger for on-Board Battery Charging Applications of Electric Vehicles,” 8th IEEE Power India Int. Conf. PIICON 2018, vol. 2, pp. 1–6, 2018, doi: 10.1109/POWERI.2018.8704399.
  • [48] F. Mwasilu, J. J. Justo, E. K. Kim, T. D. Do, and J. W. Jung, “Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration,” Renew. Sustain. Energy Rev., vol. 34, pp. 501–516, 2014, doi: 10.1016/j.rser.2014.03.031.
  • [49] L. Liu, F. Kong, X. Liu, Y. Peng, and Q. Wang, “A review on electric vehicles interacting with renewable energy in smart grid,” Renew. Sustain. Energy Rev., vol. 51, pp. 648–661, 2015, doi: 10.1016/j.rser.2015.06.036.
  • [50] A. R. Bhatti, Z. Salam, and R. H. Ashique, “Electric Vehicle Charging Using Photovoltaic based Microgrid for Remote Islands,” Energy Procedia, vol. 103, no. December, pp. 213–218, 2016, doi: 10.1016/j.egypro.2016.11.275.
  • [51] B. Berman, “CHAdeMO and China release new EV quick-charging standard, in a bid to leapfrog the industry,” 2020. .
  • [52] Wallboxok, “CHARGE MODES AND TYPES IN THE ELECTRIC CAR MARKET,” 2017. [Online]. Available: https://www.v2charge.com/modes-and-types-of-recharge-in-the-electric-car-market/.
  • [53] dekra, “Electric Vehicle conductive charging system,” pp. 1–73, 2013.
  • [54] I. 61851, “International Standard International Standard,” 61010-1 © Iec2001, vol. 2006, p. 13, 2006.
  • [55] EN IEC 61851-1, “Electric vehicle conductive charging system.” [Online]. Available: https://standards.globalspec.com/std/13385383/en-iec-61851-1.
  • [56] C. Ricaud and P. Vollet, “Connection method for charging systems – a key element for electric vehicles,” Schneider Electr., 2010.
  • [57] Pod Point, “EV Charging Connectors.” [Online]. Available: https://pod-point.com/guides/driver/ev-connector-types-speed.
  • [58] D. Güneş, İ. G. Tekdemir, M. Ş. Karaarslan, and B. Alboyacı, “Assessment of the impact of electric vehicle charge station loads on reliability indices,” J. Fac. Eng. Archit. Gazi Univ., vol. 33, no. 3, pp. 1073–1084, 2018, doi: 10.17341/gazimmfd.416408.
  • [59] ENEL X, “The Different EV Charging Connector Types.” [Online]. Available: https://evcharging.enelx.com/eu/about/news/blog/552-ev-charging-connector-types.
  • [60] Wikipedia, “Type 2 connector.” [Online]. Available: https://en.wikipedia.org/wiki/Type_2_connector.
  • [61] J. Schmutzler, C. A. Andersen, and C. Wietfeld, “Evaluation of OCPP and IEC 61850 for smart charging electric vehicles,” World Electr. Veh. J., vol. 6, no. 4, pp. 863–874, 2013, doi: 10.3390/wevj6040863.
  • [62] NZTA, “Charging point connectors and socket outlets.” [Online]. Available: https://www.nzta.govt.nz/planning-and-investment/planning/transport-planning/planning-for-electric-vehicles/national-guidance-for-public-electric-vehicle-charging-infrastructure/charging-point-connectors-and-socket-outlets/.
  • [63] Wikipedia, “Tesla Supercharger.” [Online]. Available: https://en.wikipedia.org/wiki/Tesla_Supercharger.
  • [64] Mennek, “Type 2 charging plug proposed as the common standard for Europe.” [Online]. Available: http://www.mennek.es/index.php?id=latest0&L=2&tx_ttnews[tt_news]=929&cHash=46a00bad7f0d569c00bea9537556bbeb.
  • [65] M. L. Heilig, “United States Patent Office,” 1994.
  • [66] W. B. Carlson, “Inventor of Dreams.” [Online]. Available: https://www.scientificamerican.com/article/inventor-of-dreams/.
  • [67] S. Chatterjee, A. Iyer, C. Bharatiraja, I. Vaghasia, and V. Rajesh, “Design Optimisation for an Efficient Wireless Power Transfer System for Electric Vehicles,” Energy Procedia, vol. 117, pp. 1015–1023, 2017, doi: 10.1016/j.egypro.2017.05.223.
  • [68] L. Sun, D. Ma, and H. Tang, “A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging,” Renew. Sustain. Energy Rev., vol. 91, no. March, pp. 490–503, 2018, doi: 10.1016/j.rser.2018.04.016.
  • [69] Z. Bi, T. Kan, C. C. Mi, Y. Zhang, Z. Zhao, and G. A. Keoleian, “A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility,” Appl. Energy, vol. 179, pp. 413–425, 2016, doi: 10.1016/j.apenergy.2016.07.003.
  • [70] J. S. Ho and A. S. Y. Poon, “Energy transfer for implantable electronics in the electromagnetic midfield,” Prog. Electromagn. Res., vol. 148, no. August, pp. 151–158, 2014, doi: 10.2528/PIER14070603.
  • [71] W. C. Brown, “The History of Power Transmission by Radio Waves,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 9, pp. 1230–1242, 1984, doi: 10.1109/TMTT.1984.1132833.
  • [72] P. E. Glasser, “Power from the sun: Its future.” pp. 857–861, 1968.
  • [73] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science (80-. )., vol. 317, no. 5834, pp. 83–86, 2007, doi: 10.1126/science.1143254.
  • [74] Y. Zhang, Z. Zhao, and K. Chen, “Frequency decrease analysis of resonant wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1058–1063, 2014, doi: 10.1109/TPEL.2013.2277783.
  • [75] Y. Zhang, Z. Zhao, and K. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436–2445, 2014, doi: 10.1109/TIA.2013.2295007.
  • [76] K. J. Park, J. Lim, and K. Y. Kim, “The effect of the relationships between affiliated firms on direction of income shifting within business groups,” J. Appl. Bus. Res., vol. 30, no. 3, pp. 817–832, 2014, doi: 10.19030/jabr.v30i3.8567.
  • [77] B. H. Choi, E. S. Lee, J. Huh, and C. T. Rim, “Lumped Impedance Transformers for Compact and Robust Coupled Magnetic Resonance Systems,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6046–6056, 2015, doi: 10.1109/TPEL.2015.2394242.
  • [78] J. M. Miller, O. C. Onar, and M. Chinthavali, “Primary-side power flow control of wireless power transfer for electric vehicle charging,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 147–162, 2015, doi: 10.1109/JESTPE.2014.2382569.
  • [79] C. C. Mi, G. Buja, S. Y. Choi, and C. T. Rim, “Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6533–6545, 2016, doi: 10.1109/TIE.2016.2574993.
  • [80] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 4–17, 2015, doi: 10.1109/JESTPE.2014.2319453.
  • [81] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 4–17, 2015, doi: 10.1109/JESTPE.2014.2319453.
  • [82] P. Machura and Q. Li, “A critical review on wireless charging for electric vehicles,” Renew. Sustain. Energy Rev., vol. 104, no. January, pp. 209–234, 2019, doi: 10.1016/j.rser.2019.01.027.
  • [83] EPA, “Greenhouse Gas Emissions.” [Online]. Available: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2005.
  • [84] I. Rahman, P. M. Vasant, B. S. M. Singh, M. Abdullah-Al-Wadud, and N. Adnan, “Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures,” Renew. Sustain. Energy Rev., vol. 58, pp. 1039–1047, 2016, doi: 10.1016/j.rser.2015.12.353.
  • [85] N. Adnan and P. M Vasant, “Adoption of Plug-in Hybrid Electric Vehicle among Malaysian Consumers,” Ind. Eng. Manag., vol. 5, no. 2, 2016, doi: 10.4172/2169-0316.1000185.
  • [86] L. Li, Z. Wang, F. Gao, S. Wang, and J. Deng, “A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger,” Appl. Energy, vol. 260, no. 5, p. 114156, 2020, doi: 10.1016/j.apenergy.2019.114156.
  • [87] Y. J. Jang, “Survey of the operation and system study on wireless charging electric vehicle systems,” Transp. Res. Part C Emerg. Technol., vol. 95, no. November 2017, pp. 844–866, 2018, doi: 10.1016/j.trc.2018.04.006.
  • [88] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 18–36, 2015, doi: 10.1109/JESTPE.2014.2343674.
  • [89] K. A. Kalwar, M. Aamir, and S. Mekhilef, “A design method for developing a high misalignment tolerant wireless charging system for electric vehicles,” Meas. J. Int. Meas. Confed., vol. 118, pp. 237–245, 2018, doi: 10.1016/j.measurement.2017.12.013.
  • [90] Y. D. Ko and Y. J. Jang, “Efficient design of an operation profile for wireless charging electric tram systems,” Comput. Ind. Eng., vol. 127, no. xxxx, pp. 1193–1202, 2019, doi: 10.1016/j.cie.2018.03.042.
  • [91] D. H. Cho, G. H. Jung, U. Yoon, and B. Lee, “Development & Implementation of Electric Tram System with Wireless Charging Technology,” ICT Express, vol. 1, no. 1, pp. 34–38, 2015, doi: 10.1016/S2405-9595(15)30019-9.
  • [92] Bombardier, “Bombardier PRIMOVE team. Projects of Bombardier PRIMOVE.” [Online]. Available: https://rail.bombardier.com/en.html.
  • [93] O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, and L. E. Seiber, “A novel wireless power transfer for in-motion EV/PHEV charging,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 3073–3080, 2013, doi: 10.1109/APEC.2013.6520738.
  • [94] Mark Kane, “China’s ZTE Working On 30 kW Wireless Charging.” [Online]. Available: https://insideevs.com/news/327537/chinas-zte-working-on-30-kw-wireless-charging/.
  • [95] A. B. Kurs, R. Moffatt, V. A. Us, J. D. Joannopoulos, P. H. Fisher, and M. Soljacic, “WIRELESS ENERGY TRANSFER,” 2010.
  • [96] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless Charging Technologies: Fundamentals, Standards, and Network Applications,” IEEE Commun. Surv. Tutorials, vol. 18, no. 2, pp. 1413–1452, 2016, doi: 10.1109/COMST.2015.2499783.
  • [97] V. Marsyukov et al., “Simulation of Dynamic Inductive Wireless Charging Using Overhead Line,” India Int. Conf. Power Electron. IICPE, vol. 2018–Decem, pp. 1–6, 2018, doi: 10.1109/IICPE.2018.8709337.
  • [98] S. Niu, H. Xu, Z. Sun, Z. Y. Shao, and L. Jian, “The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies,” Renew. Sustain. Energy Rev., vol. 114, no. June, p. 109302, 2019, doi: 10.1016/j.rser.2019.109302.
  • [99] K. Afridi, Wireless charging of electric vehicles, 4th ed., vol. 47, no. 4. Elsevier Inc., 2017.
  • [100] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with ‘universal’ inductive interface,” Proc. Power Convers. Conf. - Yokohama 1993, pp. 227–232, 1993, doi: 10.1109/PCCON.1993.264219.
  • [101] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution s[1] M. Yilmaz and P. T. Krein, ‘Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,’ IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673–5689, 2013, doi: 10.1109/TPEL.2012.2227500.
  • [102] K. A. Kalwar, M. Aamir, and S. Mekhilef, “Inductively coupled power transfer (ICPT) for electric vehicle charging - A review,” Renew. Sustain. Energy Rev., vol. 47, pp. 462–475, 2015, doi: 10.1016/j.rser.2015.03.040.
  • [103] Y. Choi, B. Kwak, and M. Kim, “4kW magnetic resonance Wireless Power System,” pp. 7–9, 2016.
  • [104] S. Sandrine and P. JOHN, “Greening the Accounts,” Power Syst., vol. 19, no. 11, pp. 2–4, 2012, doi: 10.13140/RG.2.1.2679.2164.
  • [105] pluglesspower, “Plugless Power,” 2017. [Online]. Available: https://www.pluglesspower.com/shop/.
  • [106] K. Ahmed, M. Aamir, M. K. Uddin, and S. Mekhilef, “Misalignment Tolerance of Wireless Charging System,” pp. 215–219, 2015.
  • [107] S. Kuzey, S. Balci, and N. Altin, “Design and analysis of a wireless power transfer system with alignment errors for electrical vehicle applications,” Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 17928–17939, 2017, doi: 10.1016/j.ijhydene.2017.03.160.
  • [108] C. Panchal, S. Stegen, and J. Lu, “Review of static and dynamic wireless electric vehicle charging system,” Eng. Sci. Technol. an Int. J., vol. 21, no. 5, pp. 922–937, 2018, doi: 10.1016/j.jestch.2018.06.015.
  • [109] A. Foote and O. C. Onar, “A review of high-power wireless power transfer,” 2017 IEEE Transp. Electrif. Conf. Expo, ITEC 2017, pp. 234–240, 2017, doi: 10.1109/ITEC.2017.7993277.
  • [110] P. Venugopal et al., “Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies,” Appl. Energy, vol. 212, no. September 2017, pp. 1226–1239, 2018, doi: 10.1016/j.apenergy.2017.12.108.
  • [111] witricity, “Be in Charge.” [Online]. Available: https://witricity.com/.
  • [112] witricity, “DRIVE Solutions.” [Online]. Available: https://witricity.com/products/automotive/.
  • [113] qualcomm, “Innovation at the speed of tomorrow.” [Online]. Available: https://www.qualcomm.com/products/automotive?id=41#media-centre.
  • [114] A. Brecher and D. Arthur, “Review and Evaluation of Wireless Power Transfer ( WPT ) for Electric Transit Applications,” FTA Res., no. FTA Report 0060, p. 61, 2014.
  • [115] A. Vesto, “Handbook of research on social, economic, and environmental sustainability in the development of smart cities,” vol. i.
  • [116] Tim Stevens, “BMW and Siemens partnering for wireless-charging EVs, cutting the cord this May.” [Online]. Available: https://www.engadget.com/2011-04-14-bmw-and-siemens-partnering-for-wireless-charging-evs-cutting-th.html.
  • [117] “Delphi Wireless Charging System.” [Online]. Available: http://delphi.com/shared/pdf/ppd/pwrelec/wireless-charging-system.pdf.
  • [118] Z. Dai, J. Wang, M. Long, and H. Huang, “A Witricity-based high-power device for wireless charging of electric vehicles,” Energies, vol. 10, no. 3, 2017, doi: 10.3390/en10030323.
  • [119] H. Zeng, S. Yang, and F. Z. Peng, “Design Consideration and Comparison of Wireless Power Transfer via Harmonic Current for PHEV and EV Wireless Charging,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 5943–5952, 2017, doi: 10.1109/TPEL.2016.2616111.
  • [120] S. C. Moon and G. W. Moon, “Wireless Power Transfer System with an Asymmetric Four-Coil Resonator for Electric Vehicle Battery Chargers,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 6844–6854, 2016, doi: 10.1109/TPEL.2015.2506779.
  • [121] J. E. Monzon, “Activities around the world,” IEEE Eng. Med. Biol. Mag., vol. 25, no. 5, pp. 13–15, 2008, doi: 10.1109/memb.2006.1705738.
  • [122] “ORNL surges forward with 20-kilowatt wireless charging for vehicles.” [Online]. Available: https://www.ornl.gov/news/ornl-surges-forward-20-kilowatt-wireless-charging-vehicles.
  • [123] T. D. Nguyen, S. Li, W. Li, and C. C. Mi, “Feasibility study on bipolar pads for efficient wireless power chargers,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1676–1682, 2014, doi: 10.1109/APEC.2014.6803531.
  • [124] G. A. Covic and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, 2013, doi: 10.1109/JPROC.2013.2244536.
  • [125] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 1, pp. 28–41, 2013, doi: 10.1109/JESTPE.2013.2264473.
  • [126] Y. Gao, A. Ginart, K. B. Farley, and Z. T. H. Tse, “Misalignment effect on efficiency of wireless power transfer for electric vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2016–May, no. 3, pp. 3526–3528, 2016, doi: 10.1109/APEC.2016.7468375.
  • [127] Y. Gao, K. B. Farley, and Z. T. H. Tse, “Investigating safety issues related to electric vehicle wireless charging technology,” 2014 IEEE Transp. Electrif. Conf. Expo Components, Syst. Power Electron. - From Technol. to Bus. Public Policy, ITEC 2014, pp. 14–17, 2014, doi: 10.1109/itec.2014.6861757.
  • [128] H. H. Wu, A. Gilchrist, K. Sealy, and D. Bronson, “A 90 percent efficient 5kW inductive charger for EVs,” 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012, pp. 275–282, 2012, doi: 10.1109/ECCE.2012.6342812.
  • [129] C. Qiu, K. T. Chau, C. Liu, and C. C. Chan, “Overview of wireless power transfer for electric vehicle charging,” 2013 World Electr. Veh. Symp. Exhib. EVS 2014, pp. 1–9, 2014, doi: 10.1109/EVS.2013.6914731.
  • [130] S. Wang and D. Dorrell, “Review of wireless charging coupler for electric vehicles,” IECON Proc. (Industrial Electron. Conf., pp. 7274–7279, 2013, doi: 10.1109/IECON.2013.6700342.
  • [131] Y. J. Jang, Y. D. Ko, and S. Jeong, “Optimal design of the wireless charging electric vehicle,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012, doi: 10.1109/IEVC.2012.6183294.
  • [132] C. A. García-Vázquez, F. Llorens-Iborra, L. M. Fernández-Ramírez, H. Sánchez-Sainz, and F. Jurado, “Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches,” Energy, vol. 137, pp. 42–57, 2017, doi: 10.1016/j.energy.2017.07.016.
  • [133] E. Coca, Wireless Power Transfer: Fundamentals and Technologies. 2016.
  • [134] X. Liu and Z. Bie, “Optimal Allocation Planning for Public EV Charging Station Considering AC and DC Integrated Chargers,” Energy Procedia, vol. 159, pp. 382–387, 2019, doi: 10.1016/j.egypro.2018.12.072.
  • [135] F. Van Der Pijl, P. Bauer, and M. Castilla, “Control method for wireless inductive energy transfer systems with relatively large air gap,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 382–390, 2013, doi: 10.1109/TIE.2011.2163917.
  • [136] M. Fuller, “Wireless charging in California: Range, recharge, and vehicle electrification,” Transp. Res. Part C Emerg. Technol., vol. 67, pp. 343–356, 2016, doi: 10.1016/j.trc.2016.02.013.
  • [137] K. Lee, Z. Pantic, and S. M. Lukic, “Reflexive field containment in dynamic inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4592–4602, 2014, doi: 10.1109/TPEL.2013.2287262.
  • [138] K. Hata, T. Imura, and Y. Hori, “Dynamic wireless power transfer system for electric vehicles to simplify ground facilities - Sensorless vehicle detection and power control strategy -,” EVS 2017 - 30th Int. Electr. Veh. Symp. Exhib., pp. 1731–1736, 2017.
  • [139] X. Zhang, Z. Yuan, Q. Yang, Y. Li, J. Zhu, and Y. Li, “Coil Design and Efficiency Analysis for Dynamic Wireless Charging System for Electric Vehicles,” IEEE Trans. Magn., vol. 52, no. 7, pp. 1–5, 2016, doi: 10.1109/TMAG.2016.2529682.
  • [140] J. COBB, “Momentum Dynamics’ Wireless Charging Could Relegate Plugs To History,” 2014. [Online]. Available: https://www.hybridcars.com/momentum-dynamics-wireless-charging-could-relegate-plugs-to-history/.
  • [141] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 4–17, 2015, doi: 10.1109/JESTPE.2014.2319453.
  • [142] B. Zhang, R. B. Carlson, J. G. Smart, E. J. Dufek, and B. Liaw, “Challenges of future high power wireless power transfer for light-duty electric vehicles----technology and risk management,” eTransportation, vol. 2, p. 100012, 2019, doi: 10.1016/j.etran.2019.100012.
  • [143] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” PowerCon 2000 - 2000 Int. Conf. Power Syst. Technol. Proc., vol. 1, pp. 79–84, 2000, doi: 10.1109/ICPST.2000.900035.
  • [144] S. Lee et al., “Active EMF cancellation method for I-type pickup of on-line electric vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1980–1983, 2011, doi: 10.1109/APEC.2011.5744868.
  • [145] J. Huh, W. Lee, G. H. Cho, B. Lee, and C. T. Rim, “Characterization of novel inductive power transfer systems for on-line electric vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1975–1979, 2011, doi: 10.1109/APEC.2011.5744867.
  • [146] J. Kim et al., “Coil design and shielding methods for a magnetic resonant wireless power transfer system,” Proc. IEEE, vol. 101, no. 6, pp. 1332–1342, 2013, doi: 10.1109/JPROC.2013.2247551.
  • [147] J. Shin et al., “Contactless power transfer systems for On-Line Electric Vehicle (OLEV),” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012, doi: 10.1109/IEVC.2012.6183255.
  • [148] Y. J. Jang, Y. D. Ko, and S. Jeong, “Creating innovation with systems integration - Road and vehicle integrated electric transportation system,” SysCon 2012 - 2012 IEEE Int. Syst. Conf. Proc., pp. 230–233, 2012, doi: 10.1109/SysCon.2012.6189531.
  • [149] J. Shin et al., “Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1179–1192, 2014, doi: 10.1109/TIE.2013.2258294.
  • [150] B. Song et al., “Design of a high power transfer pickup for On-Line Electric Vehicle (OLEV),” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, vol. 1, pp. 4–7, 2012, doi: 10.1109/IEVC.2012.6183285.
  • [151] J. S. ; B. S. ; S. S. ; S. C. ; Y. K. ; G. J. ; S. Jeon, “Design of Buried Power Line for Roadway-Powered Electric Vehicle Systems,” 2013 IEEE Wirel. Power Transf., pp. 56–59, 2013.
  • [152] S. Ahn et al., “Low frequency electromagnetic field reduction techniques for the On-Line Electric Vehicle (OLEV),” IEEE Int. Symp. Electromagn. Compat., pp. 625–630, 2010, doi: 10.1109/ISEMC.2010.5711349.
  • [153] K. Hwang, S. Kim, S. Kim, Y. Chun, and S. Ahn, “Design of Wireless Power Transfer System for Railway Application,” Int. J. Railw., vol. 5, no. 4, pp. 167–174, 2012, doi: 10.7782/ijr.2012.5.4.167.
  • [154] Wikipedia, “Flanders DRIVE.” [Online]. Available: https://en.wikipedia.org/wiki/Flanders_DRIVE.
  • [155] K. Throngnumchai, A. Hanamura, Y. Naruse, and K. Takeda, “Design and evaluation of a wireless power transfer system with road embedded transmitter coils for dynamic charging of electric vehicles,” World Electr. Veh. J., vol. 6, no. 4, pp. 848–857, 2013, doi: 10.3390/wevj6040848.
  • [156] K. Lee, Z. Pantic, and S. Lukic, “Field containment in dynamic wireless charging systems through source-reciever interaction,” 2013 IEEE Energy Convers. Congr. Expo. ECCE 2013, vol. 2, no. 1, pp. 3658–3663, 2013, doi: 10.1109/ECCE.2013.6647183.
  • [157] M. Eghtesadi, “Inductive power transfer to an electric vehicle-analytical model,” IEEE Veh. Technol. Conf., pp. 100–104, 1990, doi: 10.1109/vetec.1990.110303.
  • [158] tehad, “Elektrikli ve Hibrid Otomobil satışları %79 arttı.” [Online]. Available: http://tehad.org/2020/04/12/elektrikli-ve-hibrid-otomobil-satislari-y-artti/.
  • [159] tüik, “Motorlu Kara Taşıtları, Şubat 2020.” [Online]. Available: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=33650.
  • [160] tehad, “Türkiye’deki Şarj İstasyonu sayısı Elektrikli Otomobili yakaladı.” [Online]. Available: http://tehad.org/2019/03/25/turkiyedeki-sarj-istasyonu-sayisi-elektrikli-otomobili-yakaladi/.
  • [161] Otokar, “DORUK ELECTRA.” [Online]. Available: https://commercial.otokar.com.tr/otobus/sehir-ici-otobus/doruk-electra-otobus.
  • [162] Temsa, “md9 Electricity.” [Online]. Available: https://www.temsa.com/tr/tr/sehir-ici/md9-electricity.
  • [163] Temsa, “avenue electron.” [Online]. Available: https://www.temsa.com/tr/tr/sehir-ici/avenue-electron.
  • [164] Bozankaya, “Bozankaya Elektrikli Otobüs.” [Online]. Available: http://www.bozankaya.com.tr/elektrikliotobus/.
  • [165] Ü. Dokuz Eylül, “SOLARİS EKİBİ, YENİ BAŞARISI “DEMOBİL “İ KUTLUYOR,” 2015. [Online]. Available: http://basin.deu.edu.tr/solaris-ekibi-yeni-basarisi-demobil-i-kutluyor/.
  • [166] EVtmotor, “TÜRKİYE’NİN YERLİ ELEKTRİKLİ OTOMOBİLİ.” [Online]. Available: http://www.evtmotor.com.tr/.
  • [167] sabu, “REVOLT 9’UNCU OLDU.” [Online]. Available: https://haber.subu.edu.tr/tr/node/249.

A Review on Electric Vehicle Charging Systems and Current Status in Turkey

Year 2021, Volume: 5 Issue: 4, 316 - 330, 31.12.2021
https://doi.org/10.30939/ijastech..958368

Abstract

The reality of global warming brings along an increase in environmental aware-ness. In recent years, this awareness has shifted public focus on electric vehicles. For a large group of people greenhouse gas emission is attributed to internal combustion engines. However, some challenges have arisen for electric vehicles. Limited range due to immature battery technologies and insufficient fast charging technologies that do not meet end user expectations are some major obstacles to overcome. Eventual-ly this situation negatively affects the sales and the wide use of electric vehicles. That is the reason why studies on wired and wireless charging systems play an important role in improving the sales performance of electric vehicles. In this study a thorough review of worldwide electric vehicle charging systems is conducted and discussed in the framework of the electric vehicles, charging stations, installations, and implemen-tation of standards in Turkey. The distribution of charging stations in Turkey are analyzed with respect to location, region, type, infrastructure requirements and future projections. The historical development of charging technologies, modes and charge levels have been studied in detail. As highlight of this study, wireless charging tech-nologies were also discussed and the historical development process was analyzed along with related standards. The current state of electric vehicle sector and charging stations in Turkey are discussed and provided with up to date information.

Project Number

FOA-2018-1358

References

  • [1] T. H. E. Stern, S. Ngs, and O. F. Iron, “THE ENGINEE : lt .,” 1888.
  • [2] I. S. It, A. P. In, and O. U. R. Fa, “Notes. · • 3,.”
  • [3] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 1, pp. 3–10, 2013, doi: 10.1109/JESTPE.2013.2259614.
  • [4] Wikipedia, “EV1,” 2020. [Online]. Available: https://tr.wikipedia.org/wiki/EV1.
  • [5] Ching Chuen Chan, “THE RISE & FALL OF ELECTRIC,” Proc. IEEE, vol. 101, no. 1, pp. 206–212, 2013.
  • [6] Y. E. Ekici, “BATARYA YÖNETİM SİSTEMLERİ,” 2019.
  • [7] International Energy Agency (IEA), “Global EV Outlook 2020: Entering the decade of electric drive?,” Glob. EV Outlook 2020, p. 273, 2020.
  • [8] “Global energy & CO2 status report 2017.” [Online]. Available: https://scholar.google.com/scholar?cluster=971223945886245125&hl=tr&as_sdt=2005&sciodt=0,5.
  • [9] T. He, Y. Bai, and J. Zhu, “Optimal charging strategy of electric vehicles customers in a smart electrical car park,” IET Conf. Publ., vol. 2016, no. CP684, pp. 3–8, 2016, doi: 10.1049/cp.2016.0298.
  • [10] S. Shariff, M. S. Alam, S. Khan, M. S. Shemami, and F. Sayeed, “A review on sustainable xEV charging system in sun rich nations,” 2018 Int. Conf. Comput. Power Commun. Technol. GUCON 2018, pp. 1042–1048, 2019, doi: 10.1109/GUCON.2018.8674905.
  • [11] U. Yilmaz, O. Turksoy, and A. Teke, “Intelligent control of high energy efficient two-stage battery charger topology for electric vehicles,” Energy, vol. 186, p. 115825, 2019, doi: 10.1016/j.energy.2019.07.155.
  • [12] V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. Van den Bossche, and L. Boon-Brett, “A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles,” Renew. Sustain. Energy Rev., vol. 81, no. April, pp. 1427–1452, 2018, doi: 10.1016/j.rser.2017.05.195.
  • [13] A. Emadi, K. Rajashekara, S. S. Williamson, and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 763–770, 2005, doi: 10.1109/TVT.2005.847445.
  • [14] M. M. Hoque, M. A. Hannan, A. Mohamed, and A. Ayob, “Battery charge equalization controller in electric vehicle applications: A review,” Renew. Sustain. Energy Rev., vol. 75, no. November, pp. 1363–1385, 2017, doi: 10.1016/j.rser.2016.11.126.
  • [15] Ç. DERİCİOĞLU, E. YİRİK, E. ÜNAL, M. U. CUMA, B. ONUR, and M. TÜMAY, “a Review of Charging Technologies for Commercial Electric Vehicles,” Int. J. Adv. Automot. Technol., no. June 2019, 2018, doi: 10.15659/ijaat.18.01.892.
  • [16] A. V. J. S. Praneeth and S. S. Williamson, “A Review of Front End AC-DC Topologies in Universal Battery Charger for Electric Transportation,” 2018 IEEE Transp. Electrif. Conf. Expo, ITEC 2018, pp. 916–921, 2018, doi: 10.1109/ITEC.2018.8450186.
  • [17] I. Wagner, “Worldwide number of battery electric vehicles in use from 2012 to 2018.” [Online]. Available: https://www.statista.com/statistics/270603/worldwide-number-of-hybrid-and-electric-vehicles-since-2009/.
  • [18] A YOUNG, “Global Electric Car Market: About 43% Of All Electric Passenger Cars Were Bought In 2014, Say German Clean Energy Researchers.” [Online]. Available: https://scholar.google.com/scholar_lookup?title=Global Electric Car Market%3A about 43%25 of all electric passenger cars were bought in 2014&author=A. Young&publication_year=2015.
  • [19] insideevs, “FINAL UPDATE: Quarterly Plug-In EV Sales Scorecard.” [Online]. Available: https://insideevs.com/news/343998/monthly-plug-in-ev-sales-scorecard/.
  • [20] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151–2169, 2013, doi: 10.1109/TPEL.2012.2212917.
  • [21] J. Xiaoping, “A new AC charging system with orderly charging for electric vehicles,” 2013 5th Int. Conf. Power Electron. Syst. Appl. PESA 2013, pp. 1–4, 2013, doi: 10.1109/PESA.2013.6828230.
  • [22] 吕常智, “The Design of Electric Vehicle Charging Pile Energy Reversible,” Smart Grid, vol. 7, no. 2, pp. 59–66, 2017, doi: 10.12677/sg.2017.72007.
  • [23] Z. Zheng, T. Liu, Y. Zhang, and X. Cheng, “Analysis on development trend of electric vehicle charging mode,” ICEOE 2011 - 2011 Int. Conf. Electron. Optoelectron. Proc., vol. 1, no. Iceoe, pp. 440–442, 2011, doi: 10.1109/ICEOE.2011.6013139.
  • [24] Y. Gao, X. Zhang, Q. Cheng, B. Guo, and J. Yang, “Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries,” IEEE Access, vol. 7, pp. 43511–43524, 2019, doi: 10.1109/ACCESS.2019.2906117.
  • [25] J. He, H. Yang, H. J. Huang, and T. Q. Tang, “Impacts of wireless charging lanes on travel time and energy consumption in a two-lane road system,” Phys. A Stat. Mech. its Appl., vol. 500, pp. 1–10, 2018, doi: 10.1016/j.physa.2018.02.074.
  • [26] J. C. K. Pappas, “a New Prescription for Electric Cars.,” Energy Law J., vol. 35, no. 1, pp. 151–198, 2014.
  • [27] T. Bräunl, “EV Charging Standards,” pp. 1–5, 2012.
  • [28] Y. E. Wu, “Design and implementation of AC conductive charging system for electrical vehicles,” 2019 2nd Int. Conf. Electron. Technol. ICET 2019, pp. 282–288, 2019, doi: 10.1109/ELTECH.2019.8839585.
  • [29] SAE, “SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler.” [Online]. Available: https://www.sae.org/standards/content/j1772_201710/.
  • [30] T. Bohn, “Vehicle Charging ; Low Level AC To DC Extreme Fast Charging For Commercial Vehicles,” pp. 1–6, 2019.
  • [31] CHAdeMO, “Electric Vehicle Quick Charger Installation and Operation Manual,” 2010.
  • [32] F. Deflorio, P. Guglielmi, I. Pinna, L. Castello, and S. Marfull, “Modeling and analysis of wireless ‘charge while driving’ operations for fully electric vehicles,” Transp. Res. Procedia, vol. 5, pp. 161–174, 2015, doi: 10.1016/j.trpro.2015.01.008.
  • [33] J. Channegowda, V. K. Pathipati, and S. S. Williamson, “Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency,” IEEE Int. Symp. Ind. Electron., vol. 2015–Septe, pp. 263–268, 2015, doi: 10.1109/ISIE.2015.7281479.
  • [34] Wikipedia, “SAE J1772,” 2020. [Online]. Available: https://en.wikipedia.org/wiki/SAE_J1772.
  • [35] SAE, “J1772_201001,” SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler, 2010. [Online]. Available: https://www.sae.org/standards/content/j1772_201001/.
  • [36] P. Karlsson and J. Svensson, “DC Bus Voltage Control for a Distributed Power System,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1405–1412, 2003, doi: 10.1109/TPEL.2003.818872.
  • [37] SAE, “Charging – what can be more simple?” [Online]. Available: https://www.sae.org/binaries/content/assets/cm/content/standards/chargingprimer.pdf.
  • [38] TE Connectivity, “SAE J1772 Electric Vehicle Charge Connector Cable Assembly,” 2015.
  • [39] Jeff Plungis, “How the Electric Car Charging Network Is Expanding.” [Online]. Available: https://www.consumerreports.org/hybrids-evs/electric-car-charging-network-is-expanding/.
  • [40] B. Bart, “Level 1 and Level 2 Electric Vehicle Service Equipment ( EVSE ) Reference Design,” 2016.
  • [41] E. N. America and A. Phoenix, “Lessons Learned – The EV Project DC Fast Charge - Demand Charge Reduction Prepared for the U . S . Department of Energy Award # DE-EE0002194,” 2012.
  • [42] D. McPhail, “Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response,” Renew. Energy, vol. 67, pp. 103–108, 2014, doi: 10.1016/j.renene.2013.11.023.
  • [43] R. H. Ashique, Z. Salam, M. J. Bin Abdul Aziz, and A. R. Bhatti, “Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control,” Renew. Sustain. Energy Rev., vol. 69, no. October 2016, pp. 1243–1257, 2017, doi: 10.1016/j.rser.2016.11.245.
  • [44] T. Harighi, R. Bayindir, S. Padmanaban, L. Mihet-Popa, and E. Hossain, “An overview of energy scenarios, storage systems and the infrastructure for Vehicle-to-Grid technology,” Energies, vol. 11, no. 8, pp. 1–18, 2018, doi: 10.3390/en11082174.
  • [45] A. Ahmad, M. S. Alam, and R. Chabaan, “A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles,” IEEE Trans. Transp. Electrif., vol. 4, no. 1, pp. 38–63, 2017, doi: 10.1109/TTE.2017.2771619.
  • [46] K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, “Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques,” Renew. Sustain. Energy Rev., vol. 53, pp. 720–732, 2016, doi: 10.1016/j.rser.2015.09.012.
  • [47] A. K. Singh and M. K. Pathak, “A Comprehensive Review of Integrated Charger for on-Board Battery Charging Applications of Electric Vehicles,” 8th IEEE Power India Int. Conf. PIICON 2018, vol. 2, pp. 1–6, 2018, doi: 10.1109/POWERI.2018.8704399.
  • [48] F. Mwasilu, J. J. Justo, E. K. Kim, T. D. Do, and J. W. Jung, “Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration,” Renew. Sustain. Energy Rev., vol. 34, pp. 501–516, 2014, doi: 10.1016/j.rser.2014.03.031.
  • [49] L. Liu, F. Kong, X. Liu, Y. Peng, and Q. Wang, “A review on electric vehicles interacting with renewable energy in smart grid,” Renew. Sustain. Energy Rev., vol. 51, pp. 648–661, 2015, doi: 10.1016/j.rser.2015.06.036.
  • [50] A. R. Bhatti, Z. Salam, and R. H. Ashique, “Electric Vehicle Charging Using Photovoltaic based Microgrid for Remote Islands,” Energy Procedia, vol. 103, no. December, pp. 213–218, 2016, doi: 10.1016/j.egypro.2016.11.275.
  • [51] B. Berman, “CHAdeMO and China release new EV quick-charging standard, in a bid to leapfrog the industry,” 2020. .
  • [52] Wallboxok, “CHARGE MODES AND TYPES IN THE ELECTRIC CAR MARKET,” 2017. [Online]. Available: https://www.v2charge.com/modes-and-types-of-recharge-in-the-electric-car-market/.
  • [53] dekra, “Electric Vehicle conductive charging system,” pp. 1–73, 2013.
  • [54] I. 61851, “International Standard International Standard,” 61010-1 © Iec2001, vol. 2006, p. 13, 2006.
  • [55] EN IEC 61851-1, “Electric vehicle conductive charging system.” [Online]. Available: https://standards.globalspec.com/std/13385383/en-iec-61851-1.
  • [56] C. Ricaud and P. Vollet, “Connection method for charging systems – a key element for electric vehicles,” Schneider Electr., 2010.
  • [57] Pod Point, “EV Charging Connectors.” [Online]. Available: https://pod-point.com/guides/driver/ev-connector-types-speed.
  • [58] D. Güneş, İ. G. Tekdemir, M. Ş. Karaarslan, and B. Alboyacı, “Assessment of the impact of electric vehicle charge station loads on reliability indices,” J. Fac. Eng. Archit. Gazi Univ., vol. 33, no. 3, pp. 1073–1084, 2018, doi: 10.17341/gazimmfd.416408.
  • [59] ENEL X, “The Different EV Charging Connector Types.” [Online]. Available: https://evcharging.enelx.com/eu/about/news/blog/552-ev-charging-connector-types.
  • [60] Wikipedia, “Type 2 connector.” [Online]. Available: https://en.wikipedia.org/wiki/Type_2_connector.
  • [61] J. Schmutzler, C. A. Andersen, and C. Wietfeld, “Evaluation of OCPP and IEC 61850 for smart charging electric vehicles,” World Electr. Veh. J., vol. 6, no. 4, pp. 863–874, 2013, doi: 10.3390/wevj6040863.
  • [62] NZTA, “Charging point connectors and socket outlets.” [Online]. Available: https://www.nzta.govt.nz/planning-and-investment/planning/transport-planning/planning-for-electric-vehicles/national-guidance-for-public-electric-vehicle-charging-infrastructure/charging-point-connectors-and-socket-outlets/.
  • [63] Wikipedia, “Tesla Supercharger.” [Online]. Available: https://en.wikipedia.org/wiki/Tesla_Supercharger.
  • [64] Mennek, “Type 2 charging plug proposed as the common standard for Europe.” [Online]. Available: http://www.mennek.es/index.php?id=latest0&L=2&tx_ttnews[tt_news]=929&cHash=46a00bad7f0d569c00bea9537556bbeb.
  • [65] M. L. Heilig, “United States Patent Office,” 1994.
  • [66] W. B. Carlson, “Inventor of Dreams.” [Online]. Available: https://www.scientificamerican.com/article/inventor-of-dreams/.
  • [67] S. Chatterjee, A. Iyer, C. Bharatiraja, I. Vaghasia, and V. Rajesh, “Design Optimisation for an Efficient Wireless Power Transfer System for Electric Vehicles,” Energy Procedia, vol. 117, pp. 1015–1023, 2017, doi: 10.1016/j.egypro.2017.05.223.
  • [68] L. Sun, D. Ma, and H. Tang, “A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging,” Renew. Sustain. Energy Rev., vol. 91, no. March, pp. 490–503, 2018, doi: 10.1016/j.rser.2018.04.016.
  • [69] Z. Bi, T. Kan, C. C. Mi, Y. Zhang, Z. Zhao, and G. A. Keoleian, “A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility,” Appl. Energy, vol. 179, pp. 413–425, 2016, doi: 10.1016/j.apenergy.2016.07.003.
  • [70] J. S. Ho and A. S. Y. Poon, “Energy transfer for implantable electronics in the electromagnetic midfield,” Prog. Electromagn. Res., vol. 148, no. August, pp. 151–158, 2014, doi: 10.2528/PIER14070603.
  • [71] W. C. Brown, “The History of Power Transmission by Radio Waves,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 9, pp. 1230–1242, 1984, doi: 10.1109/TMTT.1984.1132833.
  • [72] P. E. Glasser, “Power from the sun: Its future.” pp. 857–861, 1968.
  • [73] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science (80-. )., vol. 317, no. 5834, pp. 83–86, 2007, doi: 10.1126/science.1143254.
  • [74] Y. Zhang, Z. Zhao, and K. Chen, “Frequency decrease analysis of resonant wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1058–1063, 2014, doi: 10.1109/TPEL.2013.2277783.
  • [75] Y. Zhang, Z. Zhao, and K. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436–2445, 2014, doi: 10.1109/TIA.2013.2295007.
  • [76] K. J. Park, J. Lim, and K. Y. Kim, “The effect of the relationships between affiliated firms on direction of income shifting within business groups,” J. Appl. Bus. Res., vol. 30, no. 3, pp. 817–832, 2014, doi: 10.19030/jabr.v30i3.8567.
  • [77] B. H. Choi, E. S. Lee, J. Huh, and C. T. Rim, “Lumped Impedance Transformers for Compact and Robust Coupled Magnetic Resonance Systems,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6046–6056, 2015, doi: 10.1109/TPEL.2015.2394242.
  • [78] J. M. Miller, O. C. Onar, and M. Chinthavali, “Primary-side power flow control of wireless power transfer for electric vehicle charging,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 147–162, 2015, doi: 10.1109/JESTPE.2014.2382569.
  • [79] C. C. Mi, G. Buja, S. Y. Choi, and C. T. Rim, “Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6533–6545, 2016, doi: 10.1109/TIE.2016.2574993.
  • [80] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 4–17, 2015, doi: 10.1109/JESTPE.2014.2319453.
  • [81] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 4–17, 2015, doi: 10.1109/JESTPE.2014.2319453.
  • [82] P. Machura and Q. Li, “A critical review on wireless charging for electric vehicles,” Renew. Sustain. Energy Rev., vol. 104, no. January, pp. 209–234, 2019, doi: 10.1016/j.rser.2019.01.027.
  • [83] EPA, “Greenhouse Gas Emissions.” [Online]. Available: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2005.
  • [84] I. Rahman, P. M. Vasant, B. S. M. Singh, M. Abdullah-Al-Wadud, and N. Adnan, “Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures,” Renew. Sustain. Energy Rev., vol. 58, pp. 1039–1047, 2016, doi: 10.1016/j.rser.2015.12.353.
  • [85] N. Adnan and P. M Vasant, “Adoption of Plug-in Hybrid Electric Vehicle among Malaysian Consumers,” Ind. Eng. Manag., vol. 5, no. 2, 2016, doi: 10.4172/2169-0316.1000185.
  • [86] L. Li, Z. Wang, F. Gao, S. Wang, and J. Deng, “A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger,” Appl. Energy, vol. 260, no. 5, p. 114156, 2020, doi: 10.1016/j.apenergy.2019.114156.
  • [87] Y. J. Jang, “Survey of the operation and system study on wireless charging electric vehicle systems,” Transp. Res. Part C Emerg. Technol., vol. 95, no. November 2017, pp. 844–866, 2018, doi: 10.1016/j.trc.2018.04.006.
  • [88] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 18–36, 2015, doi: 10.1109/JESTPE.2014.2343674.
  • [89] K. A. Kalwar, M. Aamir, and S. Mekhilef, “A design method for developing a high misalignment tolerant wireless charging system for electric vehicles,” Meas. J. Int. Meas. Confed., vol. 118, pp. 237–245, 2018, doi: 10.1016/j.measurement.2017.12.013.
  • [90] Y. D. Ko and Y. J. Jang, “Efficient design of an operation profile for wireless charging electric tram systems,” Comput. Ind. Eng., vol. 127, no. xxxx, pp. 1193–1202, 2019, doi: 10.1016/j.cie.2018.03.042.
  • [91] D. H. Cho, G. H. Jung, U. Yoon, and B. Lee, “Development & Implementation of Electric Tram System with Wireless Charging Technology,” ICT Express, vol. 1, no. 1, pp. 34–38, 2015, doi: 10.1016/S2405-9595(15)30019-9.
  • [92] Bombardier, “Bombardier PRIMOVE team. Projects of Bombardier PRIMOVE.” [Online]. Available: https://rail.bombardier.com/en.html.
  • [93] O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, and L. E. Seiber, “A novel wireless power transfer for in-motion EV/PHEV charging,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 3073–3080, 2013, doi: 10.1109/APEC.2013.6520738.
  • [94] Mark Kane, “China’s ZTE Working On 30 kW Wireless Charging.” [Online]. Available: https://insideevs.com/news/327537/chinas-zte-working-on-30-kw-wireless-charging/.
  • [95] A. B. Kurs, R. Moffatt, V. A. Us, J. D. Joannopoulos, P. H. Fisher, and M. Soljacic, “WIRELESS ENERGY TRANSFER,” 2010.
  • [96] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless Charging Technologies: Fundamentals, Standards, and Network Applications,” IEEE Commun. Surv. Tutorials, vol. 18, no. 2, pp. 1413–1452, 2016, doi: 10.1109/COMST.2015.2499783.
  • [97] V. Marsyukov et al., “Simulation of Dynamic Inductive Wireless Charging Using Overhead Line,” India Int. Conf. Power Electron. IICPE, vol. 2018–Decem, pp. 1–6, 2018, doi: 10.1109/IICPE.2018.8709337.
  • [98] S. Niu, H. Xu, Z. Sun, Z. Y. Shao, and L. Jian, “The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies,” Renew. Sustain. Energy Rev., vol. 114, no. June, p. 109302, 2019, doi: 10.1016/j.rser.2019.109302.
  • [99] K. Afridi, Wireless charging of electric vehicles, 4th ed., vol. 47, no. 4. Elsevier Inc., 2017.
  • [100] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with ‘universal’ inductive interface,” Proc. Power Convers. Conf. - Yokohama 1993, pp. 227–232, 1993, doi: 10.1109/PCCON.1993.264219.
  • [101] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution s[1] M. Yilmaz and P. T. Krein, ‘Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,’ IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673–5689, 2013, doi: 10.1109/TPEL.2012.2227500.
  • [102] K. A. Kalwar, M. Aamir, and S. Mekhilef, “Inductively coupled power transfer (ICPT) for electric vehicle charging - A review,” Renew. Sustain. Energy Rev., vol. 47, pp. 462–475, 2015, doi: 10.1016/j.rser.2015.03.040.
  • [103] Y. Choi, B. Kwak, and M. Kim, “4kW magnetic resonance Wireless Power System,” pp. 7–9, 2016.
  • [104] S. Sandrine and P. JOHN, “Greening the Accounts,” Power Syst., vol. 19, no. 11, pp. 2–4, 2012, doi: 10.13140/RG.2.1.2679.2164.
  • [105] pluglesspower, “Plugless Power,” 2017. [Online]. Available: https://www.pluglesspower.com/shop/.
  • [106] K. Ahmed, M. Aamir, M. K. Uddin, and S. Mekhilef, “Misalignment Tolerance of Wireless Charging System,” pp. 215–219, 2015.
  • [107] S. Kuzey, S. Balci, and N. Altin, “Design and analysis of a wireless power transfer system with alignment errors for electrical vehicle applications,” Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 17928–17939, 2017, doi: 10.1016/j.ijhydene.2017.03.160.
  • [108] C. Panchal, S. Stegen, and J. Lu, “Review of static and dynamic wireless electric vehicle charging system,” Eng. Sci. Technol. an Int. J., vol. 21, no. 5, pp. 922–937, 2018, doi: 10.1016/j.jestch.2018.06.015.
  • [109] A. Foote and O. C. Onar, “A review of high-power wireless power transfer,” 2017 IEEE Transp. Electrif. Conf. Expo, ITEC 2017, pp. 234–240, 2017, doi: 10.1109/ITEC.2017.7993277.
  • [110] P. Venugopal et al., “Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies,” Appl. Energy, vol. 212, no. September 2017, pp. 1226–1239, 2018, doi: 10.1016/j.apenergy.2017.12.108.
  • [111] witricity, “Be in Charge.” [Online]. Available: https://witricity.com/.
  • [112] witricity, “DRIVE Solutions.” [Online]. Available: https://witricity.com/products/automotive/.
  • [113] qualcomm, “Innovation at the speed of tomorrow.” [Online]. Available: https://www.qualcomm.com/products/automotive?id=41#media-centre.
  • [114] A. Brecher and D. Arthur, “Review and Evaluation of Wireless Power Transfer ( WPT ) for Electric Transit Applications,” FTA Res., no. FTA Report 0060, p. 61, 2014.
  • [115] A. Vesto, “Handbook of research on social, economic, and environmental sustainability in the development of smart cities,” vol. i.
  • [116] Tim Stevens, “BMW and Siemens partnering for wireless-charging EVs, cutting the cord this May.” [Online]. Available: https://www.engadget.com/2011-04-14-bmw-and-siemens-partnering-for-wireless-charging-evs-cutting-th.html.
  • [117] “Delphi Wireless Charging System.” [Online]. Available: http://delphi.com/shared/pdf/ppd/pwrelec/wireless-charging-system.pdf.
  • [118] Z. Dai, J. Wang, M. Long, and H. Huang, “A Witricity-based high-power device for wireless charging of electric vehicles,” Energies, vol. 10, no. 3, 2017, doi: 10.3390/en10030323.
  • [119] H. Zeng, S. Yang, and F. Z. Peng, “Design Consideration and Comparison of Wireless Power Transfer via Harmonic Current for PHEV and EV Wireless Charging,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 5943–5952, 2017, doi: 10.1109/TPEL.2016.2616111.
  • [120] S. C. Moon and G. W. Moon, “Wireless Power Transfer System with an Asymmetric Four-Coil Resonator for Electric Vehicle Battery Chargers,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 6844–6854, 2016, doi: 10.1109/TPEL.2015.2506779.
  • [121] J. E. Monzon, “Activities around the world,” IEEE Eng. Med. Biol. Mag., vol. 25, no. 5, pp. 13–15, 2008, doi: 10.1109/memb.2006.1705738.
  • [122] “ORNL surges forward with 20-kilowatt wireless charging for vehicles.” [Online]. Available: https://www.ornl.gov/news/ornl-surges-forward-20-kilowatt-wireless-charging-vehicles.
  • [123] T. D. Nguyen, S. Li, W. Li, and C. C. Mi, “Feasibility study on bipolar pads for efficient wireless power chargers,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1676–1682, 2014, doi: 10.1109/APEC.2014.6803531.
  • [124] G. A. Covic and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, 2013, doi: 10.1109/JPROC.2013.2244536.
  • [125] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 1, pp. 28–41, 2013, doi: 10.1109/JESTPE.2013.2264473.
  • [126] Y. Gao, A. Ginart, K. B. Farley, and Z. T. H. Tse, “Misalignment effect on efficiency of wireless power transfer for electric vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2016–May, no. 3, pp. 3526–3528, 2016, doi: 10.1109/APEC.2016.7468375.
  • [127] Y. Gao, K. B. Farley, and Z. T. H. Tse, “Investigating safety issues related to electric vehicle wireless charging technology,” 2014 IEEE Transp. Electrif. Conf. Expo Components, Syst. Power Electron. - From Technol. to Bus. Public Policy, ITEC 2014, pp. 14–17, 2014, doi: 10.1109/itec.2014.6861757.
  • [128] H. H. Wu, A. Gilchrist, K. Sealy, and D. Bronson, “A 90 percent efficient 5kW inductive charger for EVs,” 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012, pp. 275–282, 2012, doi: 10.1109/ECCE.2012.6342812.
  • [129] C. Qiu, K. T. Chau, C. Liu, and C. C. Chan, “Overview of wireless power transfer for electric vehicle charging,” 2013 World Electr. Veh. Symp. Exhib. EVS 2014, pp. 1–9, 2014, doi: 10.1109/EVS.2013.6914731.
  • [130] S. Wang and D. Dorrell, “Review of wireless charging coupler for electric vehicles,” IECON Proc. (Industrial Electron. Conf., pp. 7274–7279, 2013, doi: 10.1109/IECON.2013.6700342.
  • [131] Y. J. Jang, Y. D. Ko, and S. Jeong, “Optimal design of the wireless charging electric vehicle,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012, doi: 10.1109/IEVC.2012.6183294.
  • [132] C. A. García-Vázquez, F. Llorens-Iborra, L. M. Fernández-Ramírez, H. Sánchez-Sainz, and F. Jurado, “Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches,” Energy, vol. 137, pp. 42–57, 2017, doi: 10.1016/j.energy.2017.07.016.
  • [133] E. Coca, Wireless Power Transfer: Fundamentals and Technologies. 2016.
  • [134] X. Liu and Z. Bie, “Optimal Allocation Planning for Public EV Charging Station Considering AC and DC Integrated Chargers,” Energy Procedia, vol. 159, pp. 382–387, 2019, doi: 10.1016/j.egypro.2018.12.072.
  • [135] F. Van Der Pijl, P. Bauer, and M. Castilla, “Control method for wireless inductive energy transfer systems with relatively large air gap,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 382–390, 2013, doi: 10.1109/TIE.2011.2163917.
  • [136] M. Fuller, “Wireless charging in California: Range, recharge, and vehicle electrification,” Transp. Res. Part C Emerg. Technol., vol. 67, pp. 343–356, 2016, doi: 10.1016/j.trc.2016.02.013.
  • [137] K. Lee, Z. Pantic, and S. M. Lukic, “Reflexive field containment in dynamic inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4592–4602, 2014, doi: 10.1109/TPEL.2013.2287262.
  • [138] K. Hata, T. Imura, and Y. Hori, “Dynamic wireless power transfer system for electric vehicles to simplify ground facilities - Sensorless vehicle detection and power control strategy -,” EVS 2017 - 30th Int. Electr. Veh. Symp. Exhib., pp. 1731–1736, 2017.
  • [139] X. Zhang, Z. Yuan, Q. Yang, Y. Li, J. Zhu, and Y. Li, “Coil Design and Efficiency Analysis for Dynamic Wireless Charging System for Electric Vehicles,” IEEE Trans. Magn., vol. 52, no. 7, pp. 1–5, 2016, doi: 10.1109/TMAG.2016.2529682.
  • [140] J. COBB, “Momentum Dynamics’ Wireless Charging Could Relegate Plugs To History,” 2014. [Online]. Available: https://www.hybridcars.com/momentum-dynamics-wireless-charging-could-relegate-plugs-to-history/.
  • [141] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 1, pp. 4–17, 2015, doi: 10.1109/JESTPE.2014.2319453.
  • [142] B. Zhang, R. B. Carlson, J. G. Smart, E. J. Dufek, and B. Liaw, “Challenges of future high power wireless power transfer for light-duty electric vehicles----technology and risk management,” eTransportation, vol. 2, p. 100012, 2019, doi: 10.1016/j.etran.2019.100012.
  • [143] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” PowerCon 2000 - 2000 Int. Conf. Power Syst. Technol. Proc., vol. 1, pp. 79–84, 2000, doi: 10.1109/ICPST.2000.900035.
  • [144] S. Lee et al., “Active EMF cancellation method for I-type pickup of on-line electric vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1980–1983, 2011, doi: 10.1109/APEC.2011.5744868.
  • [145] J. Huh, W. Lee, G. H. Cho, B. Lee, and C. T. Rim, “Characterization of novel inductive power transfer systems for on-line electric vehicles,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 1975–1979, 2011, doi: 10.1109/APEC.2011.5744867.
  • [146] J. Kim et al., “Coil design and shielding methods for a magnetic resonant wireless power transfer system,” Proc. IEEE, vol. 101, no. 6, pp. 1332–1342, 2013, doi: 10.1109/JPROC.2013.2247551.
  • [147] J. Shin et al., “Contactless power transfer systems for On-Line Electric Vehicle (OLEV),” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012, doi: 10.1109/IEVC.2012.6183255.
  • [148] Y. J. Jang, Y. D. Ko, and S. Jeong, “Creating innovation with systems integration - Road and vehicle integrated electric transportation system,” SysCon 2012 - 2012 IEEE Int. Syst. Conf. Proc., pp. 230–233, 2012, doi: 10.1109/SysCon.2012.6189531.
  • [149] J. Shin et al., “Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles,” IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1179–1192, 2014, doi: 10.1109/TIE.2013.2258294.
  • [150] B. Song et al., “Design of a high power transfer pickup for On-Line Electric Vehicle (OLEV),” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, vol. 1, pp. 4–7, 2012, doi: 10.1109/IEVC.2012.6183285.
  • [151] J. S. ; B. S. ; S. S. ; S. C. ; Y. K. ; G. J. ; S. Jeon, “Design of Buried Power Line for Roadway-Powered Electric Vehicle Systems,” 2013 IEEE Wirel. Power Transf., pp. 56–59, 2013.
  • [152] S. Ahn et al., “Low frequency electromagnetic field reduction techniques for the On-Line Electric Vehicle (OLEV),” IEEE Int. Symp. Electromagn. Compat., pp. 625–630, 2010, doi: 10.1109/ISEMC.2010.5711349.
  • [153] K. Hwang, S. Kim, S. Kim, Y. Chun, and S. Ahn, “Design of Wireless Power Transfer System for Railway Application,” Int. J. Railw., vol. 5, no. 4, pp. 167–174, 2012, doi: 10.7782/ijr.2012.5.4.167.
  • [154] Wikipedia, “Flanders DRIVE.” [Online]. Available: https://en.wikipedia.org/wiki/Flanders_DRIVE.
  • [155] K. Throngnumchai, A. Hanamura, Y. Naruse, and K. Takeda, “Design and evaluation of a wireless power transfer system with road embedded transmitter coils for dynamic charging of electric vehicles,” World Electr. Veh. J., vol. 6, no. 4, pp. 848–857, 2013, doi: 10.3390/wevj6040848.
  • [156] K. Lee, Z. Pantic, and S. Lukic, “Field containment in dynamic wireless charging systems through source-reciever interaction,” 2013 IEEE Energy Convers. Congr. Expo. ECCE 2013, vol. 2, no. 1, pp. 3658–3663, 2013, doi: 10.1109/ECCE.2013.6647183.
  • [157] M. Eghtesadi, “Inductive power transfer to an electric vehicle-analytical model,” IEEE Veh. Technol. Conf., pp. 100–104, 1990, doi: 10.1109/vetec.1990.110303.
  • [158] tehad, “Elektrikli ve Hibrid Otomobil satışları %79 arttı.” [Online]. Available: http://tehad.org/2020/04/12/elektrikli-ve-hibrid-otomobil-satislari-y-artti/.
  • [159] tüik, “Motorlu Kara Taşıtları, Şubat 2020.” [Online]. Available: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=33650.
  • [160] tehad, “Türkiye’deki Şarj İstasyonu sayısı Elektrikli Otomobili yakaladı.” [Online]. Available: http://tehad.org/2019/03/25/turkiyedeki-sarj-istasyonu-sayisi-elektrikli-otomobili-yakaladi/.
  • [161] Otokar, “DORUK ELECTRA.” [Online]. Available: https://commercial.otokar.com.tr/otobus/sehir-ici-otobus/doruk-electra-otobus.
  • [162] Temsa, “md9 Electricity.” [Online]. Available: https://www.temsa.com/tr/tr/sehir-ici/md9-electricity.
  • [163] Temsa, “avenue electron.” [Online]. Available: https://www.temsa.com/tr/tr/sehir-ici/avenue-electron.
  • [164] Bozankaya, “Bozankaya Elektrikli Otobüs.” [Online]. Available: http://www.bozankaya.com.tr/elektrikliotobus/.
  • [165] Ü. Dokuz Eylül, “SOLARİS EKİBİ, YENİ BAŞARISI “DEMOBİL “İ KUTLUYOR,” 2015. [Online]. Available: http://basin.deu.edu.tr/solaris-ekibi-yeni-basarisi-demobil-i-kutluyor/.
  • [166] EVtmotor, “TÜRKİYE’NİN YERLİ ELEKTRİKLİ OTOMOBİLİ.” [Online]. Available: http://www.evtmotor.com.tr/.
  • [167] sabu, “REVOLT 9’UNCU OLDU.” [Online]. Available: https://haber.subu.edu.tr/tr/node/249.
There are 167 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Review Articles
Authors

Yunus Emre Ekici 0000-0001-7791-0473

İsmail Can Dikmen 0000-0002-7747-7777

Mustafa Nurmuhammed 0000-0002-5957-3255

Teoman Karadağ 0000-0002-7682-7771

Project Number FOA-2018-1358
Publication Date December 31, 2021
Submission Date June 27, 2021
Acceptance Date September 10, 2021
Published in Issue Year 2021 Volume: 5 Issue: 4

Cite

APA Ekici, Y. E., Dikmen, İ. C., Nurmuhammed, M., Karadağ, T. (2021). A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science And Technology, 5(4), 316-330. https://doi.org/10.30939/ijastech..958368
AMA Ekici YE, Dikmen İC, Nurmuhammed M, Karadağ T. A Review on Electric Vehicle Charging Systems and Current Status in Turkey. IJASTECH. December 2021;5(4):316-330. doi:10.30939/ijastech.958368
Chicago Ekici, Yunus Emre, İsmail Can Dikmen, Mustafa Nurmuhammed, and Teoman Karadağ. “A Review on Electric Vehicle Charging Systems and Current Status in Turkey”. International Journal of Automotive Science And Technology 5, no. 4 (December 2021): 316-30. https://doi.org/10.30939/ijastech. 958368.
EndNote Ekici YE, Dikmen İC, Nurmuhammed M, Karadağ T (December 1, 2021) A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science And Technology 5 4 316–330.
IEEE Y. E. Ekici, İ. C. Dikmen, M. Nurmuhammed, and T. Karadağ, “A Review on Electric Vehicle Charging Systems and Current Status in Turkey”, IJASTECH, vol. 5, no. 4, pp. 316–330, 2021, doi: 10.30939/ijastech..958368.
ISNAD Ekici, Yunus Emre et al. “A Review on Electric Vehicle Charging Systems and Current Status in Turkey”. International Journal of Automotive Science And Technology 5/4 (December 2021), 316-330. https://doi.org/10.30939/ijastech. 958368.
JAMA Ekici YE, Dikmen İC, Nurmuhammed M, Karadağ T. A Review on Electric Vehicle Charging Systems and Current Status in Turkey. IJASTECH. 2021;5:316–330.
MLA Ekici, Yunus Emre et al. “A Review on Electric Vehicle Charging Systems and Current Status in Turkey”. International Journal of Automotive Science And Technology, vol. 5, no. 4, 2021, pp. 316-30, doi:10.30939/ijastech. 958368.
Vancouver Ekici YE, Dikmen İC, Nurmuhammed M, Karadağ T. A Review on Electric Vehicle Charging Systems and Current Status in Turkey. IJASTECH. 2021;5(4):316-30.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png