Research Article
BibTex RIS Cite

The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study

Year 2025, Volume: 9 Issue: 1, 12 - 25
https://doi.org/10.30939/ijastech..1519778

Abstract

For several years now, electric cars (E-cars) have increasingly come into the public spotlight. This technology aims to provide alternatives to conventional vehicles with internal combustion engines while creating independence from politically unstable oil-producing countries. Another significant reason for this trend is the reduction of CO2 emissions to counteract the associated climate change. When powered by renewable energy sources such as wind or solar energy, E-cars theoretically avoid most of the CO2 emissions. However, from a consumer perspective, E-cars currently have two main disadvantages, such as high acquisition costs and limited range. Due to these two factors, it became imperative to be able to get accurate information about the batteries’ state, age, and range. Therefore, this article presents the main influential factors on vehicle range and a comprehensive study of different types of state of art modeling methods. The methodologies with their challenges and the necessity of using the relevant modeling methodology are described. Furthermore, experimental findings after 365 days are presented, using 60 Ah battery cells, to investigate different kinds of aging influence with various parameters like ambient temperature, charging current and depth of discharge.

References

  • [1] Ntombela M, Musasa K, Moloi KA. comprehensive review for battery electric vehicles (bev) drive circuits technology, operations, and challenges. World Electric Vehicle Journal. 2023;14(7). https://doi.org/10.3390/wevj14070195
  • [2] Lukic SM, Cao J, Bansal R. Energy storage systems for automotive applications. IEEE Transactions on Industrial Electronics. 2008;55(6):2258–2267. https://doi.org/10.1109/TIE.2008.918390
  • [3] Oman H, Gross S. Electric–vehicle batteries. IEEE Aerospace and Electronic Systems Magazine. 1995;10(2):29–35. https://doi.org/10.1109/62.350734
  • [4] Karden E, Ploumen B, Fricke B, Miller T, Snyder K. Energy storage devices for future hybrid electric vehicles. Journal of Power Sources. 2007;168(1):2–11. https://doi.org/10.1016/j.jpowsour.2006.10.090
  • [5] Budde-Meiwes H, et al. A review of current automotive battery technology and future prospects. Journal of Automobile Engineering. 2013;227:761–776. https://doi.org/10.1177/0954407013485567
  • [6] Zelinsky MA, Koch JM, Young KH. Performance comparison of rechargeable batteries for stationary applications. Batteries. 2017; 4(1):2–6. https://doi.org/10.3390/batteries4010001
  • [7] Xing Y, Ma EW, Tsui KL, Pecht M. Battery management systems in electric and hybrid vehicles. Energies. 2011;4(11):1840–1857. https://doi.org/10.3390/en4111840
  • [8] Gerssen-Gondelach SJ, Faaij APC. Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources. 2012;212:111–129. https://doi.org/10.1016/j.jpowsour.2012.03.085
  • [9] Habib AA, Motakabber SMA, Ibrahimy MI. A comparative study of electrochemical battery for electric vehicles applications. In: 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON). Dhaka; 2019;2019 November 29;44–46. https://doi.org/10.1109/PEEIACON48840.2019.9071955
  • [10] Zhou ML, Wie L, Wen JB. The parameters matching and simulation of pure electric vehicle composite power supply based on cruise. Applied Mechanics and Materials. 2014;602:2836–2839. https://doi.org/10.4028/www.scientific.net/AMM.602-605.2836
  • [11] Ognjen P, Veljko R, Željko P, Snežana A, Vladimir M. Testing of NMC and LFP Li-ION cells for surface temperature at various conditions. Case Studies in Thermal Engineering. 2024;61:104930. https://doi.org/10.1016/j.csite.2024.104930
  • [12] Fallah Seyedeh & Fitzpatrick Colin. Is shifting from Li-ion NMC to LFP in EVs beneficial for second-life storages in electricity markets? The Journal of Energy Storage. 2023;68:107740 https://doi.org/10.1016/j.est.2023.107740
  • [13] Edge JS, et al. Lithium ion battery degradation: what you need to know. Physical Chemistry Chemical Physics. 2021;23(14):8200–8221. https://doi.org/10.1039/D1CP00359C
  • [14] Megahed S, Scrosati B. Lithium-ion rechargeable batteries. Journal of Power Sources. 1994;51(1-2):79–104. https://doi.org/10.1016/0378-7753(94)01956-8
  • [15] Tosun E, Keyinci S, Yakaryılmaz AC, Yıldızhan Ş, Özcanlı M. Evaluation of Lithium-ion Batteries in Electric Vehicles. IJASTECH.2024;8(3):332-40. https://doi.org/10.30939/ijastech..1460955
  • [16] Xu B, Oudalov A, Ulbig A, Andersson G. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Transactions on Smart Grid. 2016;9(2):1131–1140. https://doi.org/10.1109/TSG.2016.2578950
  • [17] Lam L, Bauer P, Kelder E. A practical circuit-based model for li-ion battery cells in electric vehicle applications. In: 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC). 2011;2016 October 9–13. https://doi.org/10.1109/INTLEC.2011.6099803
  • [18] Garud KS, Le DT, Seong-Guk H, Nghia-Huu N, Moo-Yeon L. A review of advanced cooling strategies for battery thermal management systems in electric vehicles. Symmetry. 2023;15(7). https://doi.org/10.3390/sym15071322
  • [19] Wu S, Xiong R, Li H, Nian V, Ma S. The state of the art on preheating lithium–ion batteries in cold weather. Journal of Energy Storage. 2020;27(101059). https://doi.org/10.1016/j.est.2019.101059
  • [20] Lin X, Khosravinia K, Hu X, Li J. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Progress in Energy and Combustion Science. 2021;87(100953). https://doi.org/10.1016/j.pecs.2021.100953
  • [21] Steinstraeter M, Heinrich T, Lienkamp M. Effect of Low Temperature on Electric Vehicle Range. World Electric Vehicle Journal. 2021; 12(3):115. https://doi.org/10.3390/wevj12030115
  • [22] Schaltz E. Electric Vehicles-Modelling and Simulations. InTech; 2011. http://dx.doi.org/10.5772/20271
  • [23] Jossen, A. Moderne Akkumulatoren richtig einsetzen. 1st ed.; Reichardt Verlag; 2006. ISBN 978-3939359111.
  • [24] Wu Y, Liu Y, Feng X, Ma Z. Smart solid-state interphases enable high-safety and high-energy practical lithium batteries. Advanced Science. 2024;11(22). https://doi.org/10.1002/advs.202400600
  • [25] He H, Xiong R, Fan J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies. 2011;582–598. https://doi.org/10.3390/en4040582
  • [26] Johnson VH, Pesaran AA, Sack T. Temperature-dependent battery models for high-power lithium-ion batteries. In: 17th Annual Electric Vehicle Symposium. 2000;2000 October 15-18;3–14. https://www.nrel.gov/docs/fy01osti/28716.pdf
  • [27] Hongwen H, Xiong R, Jinxin F. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies. 2011;(4):582–598. http://dx.doi.org/10.3390/en4040582
  • [28] Jadidi Y. Advanced State Prediction of Lithium-ion Traction Batteries in Hybrid and Battery Electric Vehicle Applications; vol. 51 of Schriftenreihe des Instituts für Verbrennungsmotoren und Kraftfahrwesen der Universität Stuttgart. expert verlag ein Imprint von Narr Francke Attempto Verlag. 2011; ISBN 9783816930631.
  • [29] Proakis J, Manolakis D. Digital Signal Processing: Principles, Algorithms and Applications. 3rd ed.; New Jersey, USA: Prentice-Hall, Inc.2006;680–689; ISBN 978-0133737622.
  • [30] Popp H, Attiaa J. Lifetime analysis of four different lithium ion batteries for (plug–in) electric vehicle. In: Transport Research Arena. Paris, 2014;5:5–7 https://www.researchgate.net/publication/301788355
  • [31] Al-Zareer M, Dincer I, Rosen M. Heat transfer modeling of a novel battery thermal management system. International Journal of Heat and Mass Transfer. 2018;73:1–14. https://doi.org/10.1080/10407782.2018.1439237
  • [32] Soloy A, Bartoli T, Haidar F. Modelling and fault diagnosis of lithium-ion battery for electric powertrain. International Journal of Automotive Science And Technology. 2023;7(3):234–247. https://doi.org/10.30939/ijastech..1295130
  • [33] Amine K, Liu J, Belharouak I. High-temperature storage and cycling of c-lifepo4/graphite li-ion cells. Electrochemistry Communications. 2005;7(7):669–673. https://doi.org/10.1016/j.elecom.2005.04.018
  • [34] Jalkanen K, et al. Cycle aging of commercial nmc/graphite pouch cells at different temperatures. Applied Energy. 2015;154:160–172. https://doi.org/10.1016/j.apenergy.2015.04.110
  • [35] Jiang Y, Zhang J, Zhang C, Ma W, Jiang Z, Gao Y. Lithium-ion battery aging mechanisms and life model under different charging stresses. Journal of Power Sources. 2017;356:103–114. https://doi.org/10.1016/j.jpowsour.2017.04.084
  • [36] Schmalstieg J, Käbitz S, Ecker M. A holistic aging model for li(nimnco)o2 based 18650 lithium-ion batteries. Journal of Power Sources. 2014;257:325–334. https://doi.org/10.1016/j.jpowsour.2014.02.012
  • [37] Jin X, Vora A, Hoshing V, Saha T. Applicability of available li-ion battery degradation models for system and control algorithm design. Control Engineering Practice. 2018;71:1–9. https://doi.org/10.1016/j.conengprac.2017.10.002
  • [38] Redondo-Iglesias E, Venet P, Pelissier S. Calendar and cycling ageing combination of batteries in electric vehicles. Microelectronics Reliability. 2018;88-90:1212–1215. https://doi.org/10.1016/j.microrel.2018.06.113
  • [39] Keil P, et al. Calendar aging of lithium-ion batteries. Journal of The Electrochemical Society. 2016;163(9). https://doi.org/10.1149/2.0411609JES
  • [40] Yuksel T, Michalek J. Development of a simulation model to analyze the effect of thermal management on battery life. In: SAE 2012 World Congress Exhibition. 2012; 2012-01-0671 https://doi.org/10.4271/2012-01-0671
  • [41] Spotnitz R. Simulation of capacity fade in lithium-ion batteries. Journal of Power Sources 2003;113(1):72–80. https://doi.org/10.1016/S0378-7753(02)00490-1
  • [42] Roy PK, Shahjalal M, Shams T, Fly A, Stoyanov S, Ahsan M, Haider J. A Critical Review on Battery Aging and State Estimation Technologies of Lithium-Ion Batteries: Prospects and Issues. Electronics. 2023;12(19):4105. https://doi.org/10.3390/electronics12194105
  • [43] Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, Deng T, Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International. 2018;28(6):653–666. https://doi.org/10.1016/j.pnsc.2018.11.002
  • [44] Khalfi J, Boumaaz N, Soulmani A. Nonlinear modeling of lithium-ion battery cells for electric vehicles using a hammerstein–wiener model. Journal of Electrical Engineering Technology. 2020;16:659–669. https://doi.org/10.1007/s42835-020-00607-2
  • [45] Hariharan KS, Tagade P, Ramachandran S. Mathematical Modeling of Lithium Batteries. 1st ed.; Springer Cham; 2018.
  • [46] Marcello T, Lalo M, et al. LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control. Journal of The Electrochemical Society. 2016;163(7). https://doi.org/10.1149/2.0291607jes
  • [47] Yin L, Geng Z, Björneklett A, Söderlund E. An integrated flow–electric–thermal model for a cylindrical li-ion battery module with a direct liquid cooling strategy. Energy Technology. 2022;10(8). https://doi.org/10.1002/ente.202101131
  • [48] Franco AA. Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. The Royal Society of Chemistry. 2013;3:13027– 13058. https://doi.org/10.1039/C3RA23502E
  • [49] Ramadesigan V, et al. Modeling and simulation of lithium-ion batteries from a systems engineering perspective. The Electrochemical Society, Inc. 2012;159(3). https://doi.org/10.1149/2.018203jes
  • [50] Zhu W, Zhou P, Ren D, Yang M, Rui X, et al. A mechanistic calendar aging model of lithium-ion battery considering solid electrolyte interface growth. International Journal of Energy Research. 2022;46:15526–15529. https://doi.org/10.1002/er.8249
Year 2025, Volume: 9 Issue: 1, 12 - 25
https://doi.org/10.30939/ijastech..1519778

Abstract

References

  • [1] Ntombela M, Musasa K, Moloi KA. comprehensive review for battery electric vehicles (bev) drive circuits technology, operations, and challenges. World Electric Vehicle Journal. 2023;14(7). https://doi.org/10.3390/wevj14070195
  • [2] Lukic SM, Cao J, Bansal R. Energy storage systems for automotive applications. IEEE Transactions on Industrial Electronics. 2008;55(6):2258–2267. https://doi.org/10.1109/TIE.2008.918390
  • [3] Oman H, Gross S. Electric–vehicle batteries. IEEE Aerospace and Electronic Systems Magazine. 1995;10(2):29–35. https://doi.org/10.1109/62.350734
  • [4] Karden E, Ploumen B, Fricke B, Miller T, Snyder K. Energy storage devices for future hybrid electric vehicles. Journal of Power Sources. 2007;168(1):2–11. https://doi.org/10.1016/j.jpowsour.2006.10.090
  • [5] Budde-Meiwes H, et al. A review of current automotive battery technology and future prospects. Journal of Automobile Engineering. 2013;227:761–776. https://doi.org/10.1177/0954407013485567
  • [6] Zelinsky MA, Koch JM, Young KH. Performance comparison of rechargeable batteries for stationary applications. Batteries. 2017; 4(1):2–6. https://doi.org/10.3390/batteries4010001
  • [7] Xing Y, Ma EW, Tsui KL, Pecht M. Battery management systems in electric and hybrid vehicles. Energies. 2011;4(11):1840–1857. https://doi.org/10.3390/en4111840
  • [8] Gerssen-Gondelach SJ, Faaij APC. Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources. 2012;212:111–129. https://doi.org/10.1016/j.jpowsour.2012.03.085
  • [9] Habib AA, Motakabber SMA, Ibrahimy MI. A comparative study of electrochemical battery for electric vehicles applications. In: 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON). Dhaka; 2019;2019 November 29;44–46. https://doi.org/10.1109/PEEIACON48840.2019.9071955
  • [10] Zhou ML, Wie L, Wen JB. The parameters matching and simulation of pure electric vehicle composite power supply based on cruise. Applied Mechanics and Materials. 2014;602:2836–2839. https://doi.org/10.4028/www.scientific.net/AMM.602-605.2836
  • [11] Ognjen P, Veljko R, Željko P, Snežana A, Vladimir M. Testing of NMC and LFP Li-ION cells for surface temperature at various conditions. Case Studies in Thermal Engineering. 2024;61:104930. https://doi.org/10.1016/j.csite.2024.104930
  • [12] Fallah Seyedeh & Fitzpatrick Colin. Is shifting from Li-ion NMC to LFP in EVs beneficial for second-life storages in electricity markets? The Journal of Energy Storage. 2023;68:107740 https://doi.org/10.1016/j.est.2023.107740
  • [13] Edge JS, et al. Lithium ion battery degradation: what you need to know. Physical Chemistry Chemical Physics. 2021;23(14):8200–8221. https://doi.org/10.1039/D1CP00359C
  • [14] Megahed S, Scrosati B. Lithium-ion rechargeable batteries. Journal of Power Sources. 1994;51(1-2):79–104. https://doi.org/10.1016/0378-7753(94)01956-8
  • [15] Tosun E, Keyinci S, Yakaryılmaz AC, Yıldızhan Ş, Özcanlı M. Evaluation of Lithium-ion Batteries in Electric Vehicles. IJASTECH.2024;8(3):332-40. https://doi.org/10.30939/ijastech..1460955
  • [16] Xu B, Oudalov A, Ulbig A, Andersson G. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Transactions on Smart Grid. 2016;9(2):1131–1140. https://doi.org/10.1109/TSG.2016.2578950
  • [17] Lam L, Bauer P, Kelder E. A practical circuit-based model for li-ion battery cells in electric vehicle applications. In: 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC). 2011;2016 October 9–13. https://doi.org/10.1109/INTLEC.2011.6099803
  • [18] Garud KS, Le DT, Seong-Guk H, Nghia-Huu N, Moo-Yeon L. A review of advanced cooling strategies for battery thermal management systems in electric vehicles. Symmetry. 2023;15(7). https://doi.org/10.3390/sym15071322
  • [19] Wu S, Xiong R, Li H, Nian V, Ma S. The state of the art on preheating lithium–ion batteries in cold weather. Journal of Energy Storage. 2020;27(101059). https://doi.org/10.1016/j.est.2019.101059
  • [20] Lin X, Khosravinia K, Hu X, Li J. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Progress in Energy and Combustion Science. 2021;87(100953). https://doi.org/10.1016/j.pecs.2021.100953
  • [21] Steinstraeter M, Heinrich T, Lienkamp M. Effect of Low Temperature on Electric Vehicle Range. World Electric Vehicle Journal. 2021; 12(3):115. https://doi.org/10.3390/wevj12030115
  • [22] Schaltz E. Electric Vehicles-Modelling and Simulations. InTech; 2011. http://dx.doi.org/10.5772/20271
  • [23] Jossen, A. Moderne Akkumulatoren richtig einsetzen. 1st ed.; Reichardt Verlag; 2006. ISBN 978-3939359111.
  • [24] Wu Y, Liu Y, Feng X, Ma Z. Smart solid-state interphases enable high-safety and high-energy practical lithium batteries. Advanced Science. 2024;11(22). https://doi.org/10.1002/advs.202400600
  • [25] He H, Xiong R, Fan J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies. 2011;582–598. https://doi.org/10.3390/en4040582
  • [26] Johnson VH, Pesaran AA, Sack T. Temperature-dependent battery models for high-power lithium-ion batteries. In: 17th Annual Electric Vehicle Symposium. 2000;2000 October 15-18;3–14. https://www.nrel.gov/docs/fy01osti/28716.pdf
  • [27] Hongwen H, Xiong R, Jinxin F. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies. 2011;(4):582–598. http://dx.doi.org/10.3390/en4040582
  • [28] Jadidi Y. Advanced State Prediction of Lithium-ion Traction Batteries in Hybrid and Battery Electric Vehicle Applications; vol. 51 of Schriftenreihe des Instituts für Verbrennungsmotoren und Kraftfahrwesen der Universität Stuttgart. expert verlag ein Imprint von Narr Francke Attempto Verlag. 2011; ISBN 9783816930631.
  • [29] Proakis J, Manolakis D. Digital Signal Processing: Principles, Algorithms and Applications. 3rd ed.; New Jersey, USA: Prentice-Hall, Inc.2006;680–689; ISBN 978-0133737622.
  • [30] Popp H, Attiaa J. Lifetime analysis of four different lithium ion batteries for (plug–in) electric vehicle. In: Transport Research Arena. Paris, 2014;5:5–7 https://www.researchgate.net/publication/301788355
  • [31] Al-Zareer M, Dincer I, Rosen M. Heat transfer modeling of a novel battery thermal management system. International Journal of Heat and Mass Transfer. 2018;73:1–14. https://doi.org/10.1080/10407782.2018.1439237
  • [32] Soloy A, Bartoli T, Haidar F. Modelling and fault diagnosis of lithium-ion battery for electric powertrain. International Journal of Automotive Science And Technology. 2023;7(3):234–247. https://doi.org/10.30939/ijastech..1295130
  • [33] Amine K, Liu J, Belharouak I. High-temperature storage and cycling of c-lifepo4/graphite li-ion cells. Electrochemistry Communications. 2005;7(7):669–673. https://doi.org/10.1016/j.elecom.2005.04.018
  • [34] Jalkanen K, et al. Cycle aging of commercial nmc/graphite pouch cells at different temperatures. Applied Energy. 2015;154:160–172. https://doi.org/10.1016/j.apenergy.2015.04.110
  • [35] Jiang Y, Zhang J, Zhang C, Ma W, Jiang Z, Gao Y. Lithium-ion battery aging mechanisms and life model under different charging stresses. Journal of Power Sources. 2017;356:103–114. https://doi.org/10.1016/j.jpowsour.2017.04.084
  • [36] Schmalstieg J, Käbitz S, Ecker M. A holistic aging model for li(nimnco)o2 based 18650 lithium-ion batteries. Journal of Power Sources. 2014;257:325–334. https://doi.org/10.1016/j.jpowsour.2014.02.012
  • [37] Jin X, Vora A, Hoshing V, Saha T. Applicability of available li-ion battery degradation models for system and control algorithm design. Control Engineering Practice. 2018;71:1–9. https://doi.org/10.1016/j.conengprac.2017.10.002
  • [38] Redondo-Iglesias E, Venet P, Pelissier S. Calendar and cycling ageing combination of batteries in electric vehicles. Microelectronics Reliability. 2018;88-90:1212–1215. https://doi.org/10.1016/j.microrel.2018.06.113
  • [39] Keil P, et al. Calendar aging of lithium-ion batteries. Journal of The Electrochemical Society. 2016;163(9). https://doi.org/10.1149/2.0411609JES
  • [40] Yuksel T, Michalek J. Development of a simulation model to analyze the effect of thermal management on battery life. In: SAE 2012 World Congress Exhibition. 2012; 2012-01-0671 https://doi.org/10.4271/2012-01-0671
  • [41] Spotnitz R. Simulation of capacity fade in lithium-ion batteries. Journal of Power Sources 2003;113(1):72–80. https://doi.org/10.1016/S0378-7753(02)00490-1
  • [42] Roy PK, Shahjalal M, Shams T, Fly A, Stoyanov S, Ahsan M, Haider J. A Critical Review on Battery Aging and State Estimation Technologies of Lithium-Ion Batteries: Prospects and Issues. Electronics. 2023;12(19):4105. https://doi.org/10.3390/electronics12194105
  • [43] Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, Deng T, Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International. 2018;28(6):653–666. https://doi.org/10.1016/j.pnsc.2018.11.002
  • [44] Khalfi J, Boumaaz N, Soulmani A. Nonlinear modeling of lithium-ion battery cells for electric vehicles using a hammerstein–wiener model. Journal of Electrical Engineering Technology. 2020;16:659–669. https://doi.org/10.1007/s42835-020-00607-2
  • [45] Hariharan KS, Tagade P, Ramachandran S. Mathematical Modeling of Lithium Batteries. 1st ed.; Springer Cham; 2018.
  • [46] Marcello T, Lalo M, et al. LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control. Journal of The Electrochemical Society. 2016;163(7). https://doi.org/10.1149/2.0291607jes
  • [47] Yin L, Geng Z, Björneklett A, Söderlund E. An integrated flow–electric–thermal model for a cylindrical li-ion battery module with a direct liquid cooling strategy. Energy Technology. 2022;10(8). https://doi.org/10.1002/ente.202101131
  • [48] Franco AA. Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. The Royal Society of Chemistry. 2013;3:13027– 13058. https://doi.org/10.1039/C3RA23502E
  • [49] Ramadesigan V, et al. Modeling and simulation of lithium-ion batteries from a systems engineering perspective. The Electrochemical Society, Inc. 2012;159(3). https://doi.org/10.1149/2.018203jes
  • [50] Zhu W, Zhou P, Ren D, Yang M, Rui X, et al. A mechanistic calendar aging model of lithium-ion battery considering solid electrolyte interface growth. International Journal of Energy Research. 2022;46:15526–15529. https://doi.org/10.1002/er.8249
There are 50 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains
Journal Section Articles
Authors

Benan Serarslan 0009-0000-1000-9656

Publication Date
Submission Date September 21, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Serarslan, B. (n.d.). The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study. International Journal of Automotive Science And Technology, 9(1), 12-25. https://doi.org/10.30939/ijastech..1519778
AMA Serarslan B. The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study. IJASTECH. 9(1):12-25. doi:10.30939/ijastech.1519778
Chicago Serarslan, Benan. “The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study”. International Journal of Automotive Science And Technology 9, no. 1 n.d.: 12-25. https://doi.org/10.30939/ijastech. 1519778.
EndNote Serarslan B The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study. International Journal of Automotive Science And Technology 9 1 12–25.
IEEE B. Serarslan, “The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study”, IJASTECH, vol. 9, no. 1, pp. 12–25, doi: 10.30939/ijastech..1519778.
ISNAD Serarslan, Benan. “The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study”. International Journal of Automotive Science And Technology 9/1 (n.d.), 12-25. https://doi.org/10.30939/ijastech. 1519778.
JAMA Serarslan B. The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study. IJASTECH.;9:12–25.
MLA Serarslan, Benan. “The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study”. International Journal of Automotive Science And Technology, vol. 9, no. 1, pp. 12-25, doi:10.30939/ijastech. 1519778.
Vancouver Serarslan B. The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study. IJASTECH. 9(1):12-25.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png