Review
BibTex RIS Cite

An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization

Year 2025, Volume: 9 Issue: 3, 310 - 324, 30.09.2025
https://doi.org/10.30939/ijastech..1738230

Abstract

Hydrogen as a fuel exhibits significant potential for integration into energy systems, potentially enabling the decarbonization of the transportation sector and achieving sustainability goals in alignment with global and European Sustainable Development Goals strategies (SDGs). The decarbonization of the energy sector is outlined in the Paris Agreement, which sets specific objectives that United Nations member states are obligated to meet by 2030 and 2050. This paper explores the latest trends in the development and application of hydrogen in internal combustion engines (H₂ - ICE) as a fuel. It covers the fundamental principles of H₂ - ICE operation, including necessary modifications to conventional internal combustion engines (modification of fuel supply systems, combustion chamber design, thermal load management, and H₂ storage systems in vehicles). Additionally, the paper examines the compliance of H₂ - ICE technology with European strategies, including the European Green Deal and Euro 7 emission standards. The European Union's regulatory framework (Hydrogen Strategy and REPowerEU plan) defines guidelines for accelerating the transition to renewable energy sources and achieving energy independence, supported by financial mechanisms that encourage the adoption of hydrogen in the automotive industry. Furthermore, the study provides an analytical overview of industry trends among leading vehicle and engine manufacturers, highlighting the development processes of hydrogen engines and their applications in passenger and commercial vehicles. Through an analysis of the advantages and limitations of H₂ - ICE, the paper positions H₂ - ICE as a complementary technology to fuel cells (hybrid electric vehicles) and offers specific conclusions and recommendations for future research, including improvements in engine efficiency, emission reductions, and the development of hydrogen infrastructure. These efforts aim to ensure a sustainable and economically viable transition toward clean transportation.

References

  • [1] Aslan N, Kılıc E, Şekkeli M. Modeling of Electric Vehicles as a Load Of The Distribution Grid. International Journal of Automotive Science and Technology. 2023;7(1):54 - 62. https://doi.org/10.30939/ijastech..1165750
  • [2] Bogdanov D, Gulagi A, Fasihi M, Breyer C. Full energy sector transition towards 100 % renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Applied Energy. 2021;283:116273. https://doi.org/10.1016/j.apenergy.2020.116273
  • [3] Seyitoglu SS. The Influence of Road Transport on Carbon Footprint: A Case Study of the Black Sea Region. IJASTECH. 2024;8(1):37 - 43. https://doi.org/10.30939/ijastech..1359220
  • [4] Rogelj J, Luderer G, Pietzcker RC, Kriegler E, Schaeffer M, Krey V, Riahi K. Energy system transformations for limiting end - of - century warming to below 1.5 C. Nat Clim Chang. 2015;5(6):519 - 27. https://doi.org/10.1038/nclimate2572
  • [5] Schellnhuber HJ, Rahmstorf S, Winkelmann R. Why the right climate target was agreed in Paris. Nat Clim Chang. 2016;6(7):649 - 53. https://doi.org/10.1038/nclimate3013
  • [6] Intergovernmental Panel on Climate Change. Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report Cambridge. Cambridge University Press; 2014. https://doi.org/10.1017/cbo9781107415416
  • [7] Haasz T, Vilchez JJ, Kunze R, Deane P, Fraboulet D, Fahl U, Mulholland E. Perspectives on decarbonizing the transport sector in the EU - 28. Energy Strategy Rev. 2018;20:124 - 32. https://doi.org/10.1016/j.esr.2017.12.007
  • [8] Meo SA, Salih MA, Alkhalifah JM, Alsomali AH, Almushawah AA. Environmental pollutants particulate matter (PM2. 5, PM10), Carbon Monoxide (CO), Nitrogen dioxide (NO2), Sulfur dioxide (SO2), and Ozone (O3) impact on lung functions. Journal of King Saud University - Science. 2024;36(7):103280. https://doi.org/10.1016/j.jksus.2024.103280
  • [9] Ratiu IA, Ligor T, Bocos - Bintintan V, Mayhew CA, Buszewski B. Volatile organic compounds in exhaled breath as fingerprints of lung cancer, asthma and COPD. J Clin Med. 2020;10(1):32. https://doi.org/10.3390/jcm10010032
  • [10] Larson ED. A review of life - cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev. 2006;10(2):109 - 26. https://doi.org/10.1016/s0973 - 0826(08)60536 - 0
  • [11] Scheuing H, Kamm J. The EU on the road to climate neutrality–is the ‘Fit for 55’package fit for purpose?. Renewable Energy Law and Policy Review. 2022;10(3 - 4):4 - 18. https://doi.org/10.4337/relp.2022.03 - 04.01
  • [12] Tomaschek J. Long - term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth: application of an energy system model for Gauteng province [thesis]. University of Stuttgart; 2013. https://doi.org/10.18419/opus - 2313
  • [13] Stanley JK, Hensher DA, Loader C. Road transport and climate change: Stepping off the greenhouse gas. Transp Res Part A Policy Pract. 2011;45(10):1020 - 30. https://doi.org/10.1016/j.tra.2009.04.005
  • [14] Bubeck S, Tomaschek J, Fahl U. Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany. Transp Policy. 2016;50:63 - 77. https://doi.org/10.1016/j.tranpol.2016.05.012
  • [15] Šehović J, Bibić D. Energy sources as a function of electric vehicle emission: The case of Bosnia and Herzegovina. Environ Res Technol. 2024;7(2):149 - 59. https://doi.org/10.35208/ert.1402323
  • [16] Filyppova S, Bovnegra L, Chukurna O, Vudvud O, Dobrovolskyi V. Assessment of the Impact of Automatic Parking on Emissions of Harmful Substances in the Green Logistic System. In: New Technologies, Development and Application IV. NT 2021. Lecture Notes in Networks and Systems. Cham: Springer; 2021. https://doi.org/10.1007/978 - 3 - 030 - 75275 - 0_89
  • [17] Memić B, Avdagić - Golub E, Kosovac A, Muharemović E. Estimating Urban Air Quality According to Sustainable Development Goal 11. In: New Technologies, Development and Application VI. NT 2023. Lecture Notes in Networks and Systems. Cham: Springer; 2023. https://doi.org/10.1007/978 - 3 - 031 - 31066 - 9_76
  • [18] Saju C, Michael PA, Jarin T. Modeling and control of a hybrid electric vehicle to optimize system performance for fuel efficiency. Sustainable Energy Technologies and Assessments. 2022;52:102087. https://doi.org/10.1016/j.seta.2022.102087
  • [19] Neamţu G, Titu AM. Level of Atmospheric Pollution from the Hybrid Vehicle. In: New Technologies, Development and Application V. NT 2022. Lecture Notes in Networks and Systems. Cham: Springer; 2022. https://doi.org/10.1007/978 - 3 - 031 - 05230 - 9_84
  • [20] Ehsani M, Singh KV, Bansal HO, Mehrjardi RT. State of the Art and Trends in Electric and Hybrid Electric Vehicles. Proc IEEE. 2021;109(6):967–84. https://doi.org/10.1109/jproc.2021.3072788
  • [21] Habib MA, Abdulrahman GA, Alquaity AB, Qasem NA. Hydrogen combustion, production, and applications: A review. Alex Eng J. 2024;100:182–207. https://doi.org/10.1016/j.aej.2024.05.030
  • [22] Usman MR. Hydrogen storage methods: Review and current status. Renew Sustain Energy Rev. 2022;167:112743. https://doi.org/10.1016/j.rser.2022.112743
  • [23] Naquash A, Riaz A, Lee H, Qyyum MA, Lee S, Lam SS, Lee M. Hydrofluoroolefin - based mixed refrigerant for enhanced performance of hydrogen liquefaction process. Int J Hydrogen Energy. 2022;47(98):41648–62. https://doi.org/10.1016/j.ijhydene.2022.02.010
  • [24] Naquash A, Riaz A, Qyyum MA, Kim G, Lee M. Process knowledge inspired opportunistic approach for thermodynamically feasible and efficient design of hydrogen liquefaction process. Int J Hydrogen Energy. 2022;48(68):26583–98. https://doi.org/10.1016/j.ijhydene.2022.11.163
  • [25] Bayzou, R., Soloy, A., Bartoli, T., Haıdar, F.. Thermal Model of Lithium-Ion Batteries for Hybrid Electric Vehicles. Engineering Perspective, 2025: 5(2), 60-67. https://doi.org/10.29228/eng.pers.76492
  • [26] Bousseksou, M. O., Nouri, K., Bartoli, T., … Bouzidi, W. (2025). Magnetocaloric Cooling for Hybrid/Hydrogen and Electric Vehicle Cabin and Powertrain Components. Engineering Perspective, 5(1), 9-20. https://doi.org/10.29228/eng.pers.77695
  • [27] Spies KI. Too Fast And/Or Too Furious? Bmw's Commitment to Fuel Cell Technology - Transforming Automotive Value Chains: A Comparative Study of EV and FCEV Value Chains (Master's thesis, Universidade NOVA de Lisboa (Portugal)).
  • [28] Zhao K, Lou D, Zhang Y, Fang L, Liu D. Study on combustion and emission characteristics of hydrogen/air mixtures in a constant volume combustion bomb. Renew Energy. 2024;237(Part A):121626. https://doi.org/10.1016/j.renene.2024.121626
  • [29] Wright ML, Lewis AC. Decarbonisation of heavy-duty diesel engines using hydrogen fuel: a review of the potential impact on NO x emissions. Environmental Science: Atmospheres. 2022;2(5):852-66. https://doi.org/10.1039/D2EA00029F
  • [30] Fu T, Günther M, Pischinger S, Heuer S, Steffens C. Investigation of the combustion noise of hydrogen piston engines. Int J Hydrogen Energy. 2024;87:148–58. https://doi.org/10.1016/j.ijhydene.2024.08.478
  • [31] Piano A, Quattrone G, Millo F, Pesce F, Vassallo A. Development and validation of a predictive combustion model for hydrogen - fuelled internal combustion engines. Int J Hydrogen Energy. 2024;89:1310–20. https://doi.org/10.1016/j.ijhydene.2024.09.407
  • [32] Qiang Y, Zhao S, Yang J, Cai J, Su F, Wang S, Ji C. Effect of excess air ratio and spark timing on the combustion and emission characteristics of turbulent jet ignition direct injection hydrogen engine. Int J Hydrogen Energy. 2024;93:1166–78. https://doi.org/10.1016/j.ijhydene.2024.11.052
  • [33] Cecere G. Hydrogen as Fuel for ICEs: State of Art and Technological Challenges. J Eng. 2024;9930258. https://doi.org/10.1155/2024/9930258
  • [34] Jiménez Casanova, P. Towards a Sustainable, Integrated, and Decarbonized Energy System in the EU: Addressing Structural Challenges Through Hydrogen System Planning. Journal for European Environmental & Planning Law, 2024;21(3 - 4):193 - 214. https://doi.org/10.1163/18760104 - 21030004
  • [35] Kumar R, Kanwal A, Asim M, Pervez M, Mujtaba MA, Fouad Y, Kalam MA. Transforming the transportation sector: Mitigating greenhouse gas emissions through electric vehicles (EVs) and exploring sustainable pathways. AIP Advances. 2024;14(3). https://doi.org/10.1063/5.0193506
  • [36] Banas D, Melnyk T. The Transformation of the European Union's Energy Sector. Probl Ekorozwoju/Problems of Sustainable Development. 2024;19(2):293. https://doi:10.35784/preko.6015
  • [37] Bilgili F, Magazzino C. The nexus between the transportation sector and sustainable development goals: Theoretical and practical implications. Frontiers in Environmental Science. 2022;10:1055537. https://doi.org/10.3389/fenvs.2022.1055537
  • [38] Vivanco - Martín B, Iranzo A. Analysis of the European Strategy for Hydrogen: A Comprehensive Review. Energies. 2023;16(9):3866. https://doi.org/10.3390/en16093866
  • [39] Barbier A, Salavert JM, Palau CE, Guardiola C. Analysis of the Euro 7 on - board emissions monitoring concept with real - driving data. Transportation Research Part D: Transport and Environment. 2024;127:104062. https://doi.org/10.1016/j.trd.2024.104062
  • [40] Morgan C, Goodwin J. Impact of the Proposed Euro 7 Regulations on Exhaust Aftertreatment System Design: New Euro standards of global importance to the automotive industry. Johnson MattheyTechnol. 2023;67(2):239–45. https://doi.org/10.1595/205651323x16805977899699
  • [41] Klebaner S, Pérez SR. The European automotive industry: a strategic sector in search of a new industrial policy. InEU Industrial Policy in the Multipolar Economy. 2022;1:304 - 331. https://doi.org/10.4337/9781800372634.00015
  • [42] Genovese M, Cigolotti V, Jannelli E, Fragiacomo P. Current standards and configurations for the permitting and operation of hydrogen refueling stations. Int J Hydrogen Energy. 2023;48(51):19357–71. https://doi.org/10.1016/j.ijhydene.2023.01.324
  • [43] KIM JW, LEE T, CHOI JW. Current status of standardization of ISO TC197. Transactions of the Korean hydrogen and new energy society. 2016;27(3):245 - 55. https://doi.org/10.7316/KHNES.2016.27.3.245
  • [44] Li, K, Guo, X, Shen, T, Gao, Y, Han, Y, & Zheng, J. Review of Standards for Liquid Hydrogen Storage Vessels. Proceedings of the. Bellevue, Washington, USA. 2024:V001T01A030. https://doi.org/10.1115/PVP2024 - 122708
  • [45] Rana, M. D., Smith, J. H., and Tribolet, R. O. Technical Basis for Flawed Cylinder Test Specification to Assure Adequate Fracture Resistance of ISO High - Strength Steel Cylinder. ASME. J. Pressure Vessel Technol. 1997;119(4):475–480. https://doi.org/10.1115/1.2842332
  • [46] Genovese M, Cigolotti V, Jannelli E, Fragiacomo P. Comparative study of global, European and Italian standards on hydrogen refueling stations. InE3S Web of Conferences 2022;334:09003. https://doi.org/10.1051/e3sconf/202233409003
  • [47] Johnson BC, Hulett RH. Introduction to IEC/IEEE 60079 - 30 1 and 2 trace heating for explosive atmospheres. In2016 Petroleum and Chemical Industry Technical Conference (PCIC). 2016;1:1 - 10. https://doi.org/10.1109/PCICON.2016.7589197
  • [48] Li X, Shen B, Xiao W, Wang L, Li L, Yuan X, Ni F. A use Cases Analysis Method for the Evaluation of the Adaptability to Future Sustainable Transportation of IEC Standard System. In2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT). 2020;1: 679 - 683) https://doi.org/10.1109/ISCTT51595.2020.00130
  • [49] Kumar S, Nanan - Surujbally A, Sharma DP, Pathak D. Hydrogen safety/standards (national and international document standards on hydrogen energy and fuel cell). InTowards hydrogen infrastructure. 2024;1:315 - 346. https://doi.org/10.1016/B978 - 0 - 323 - 95553 - 9.00011 - X
  • [50] Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A. Hydrogen internal combustion engine vehicles: a review. Energies. 2022;15(23):8937. https://doi.org/10.3390/en15238937
  • [51] Stępień Z. A comprehensive overview of hydrogen - fueled internal combustion engines: Achievements and future challenges. Energies. 2021;14(20):6504. https://doi.org/10.3390/en14206504
  • [52] Yip HL, Srna A, Yuen AC, Kook S, Taylor RA, Yeoh GH, Medwell PR, Chan QN. A review of hydrogen direct injection for internal combustion engines: towards carbon - free combustion. Appl Sci. 2019;9(22):4842. https://doi.org/10.3390/app9224842
  • [53] Antunes JG, Mikalsen R, Roskilly AP. An investigation of hydrogen - fuelled HCCI engine performance and operation. Int J Hydrogen Energy. 2008;33(20):5823–8. https://doi.org/10.1016/j.ijhydene.2008.07.121
  • [54] Dam, Q. T., & Haidar, F.. Adaptive PID Controller Design for Velocity Control of a Hydrogen Internal Combustion Engines using RBF Neural Networks. Engineering Perspective, 2025:5(1), 41-48. https://doi.org/10.29228/eng.pers.76280
  • [55] Stenlåås O, Christensen M, Egnell R, Johansson B, et al. Hydrogen as Homogeneous Charge Compression Ignition Engine Fuel. SAE Tech Pap. 2004;2004 - 01 - 1976. https://doi.org/10.4271/2004 - 01 - 1976
  • [56] White CM, Steeper RR, Lutz AE. The hydrogen - fueled internal combustion engine: a technical review. Int J Hydrogen Energy. 2006;31(10):1292–305. https://doi.org/10.1016/j.ijhydene.2005.12.001
  • [57] Tang X, Kabat DM, Natkin RJ, Stockhausen WF, Heffel J. Ford P2000 hydrogen engine dynamometer development. SAE Trans. 2002;1:631–42. https://doi.org/10.4271/2002 - 01 - 0242
  • [58] Dimitriou P, Tsujimura T. A review of hydrogen as a compression ignition engine fuel. Int J Hydrogen Energy. 2017;42(38):24470–86. https://doi.org/10.1016/j.ijhydene.2017.07.232
  • [59] Chintala V, Subramanian KA. A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode. Renew Sustain Energy Rev. 2016;70:472–91. https://doi.org/10.1016/j.rser.2016.11.247
  • [60] Mohammadi A, Shioji M, Nakai Y, Ishikura W, Tabo E. Performance and combustion characteristics of a direct injection SI hydrogen engine. Int J Hydrogen Energy. 2007;32(2):296–304. https://doi.org/10.1016/j.ijhydene.2006.06.005
  • [61] Homan HS, Reynolds RK, De Boer PC, McLean WJ. Hydrogen - fueled diesel engine without timed ignition. Int J Hydrogen Energy. 1979;4(4):315–25. https://doi.org/10.1016/0360 - 3199(79)90006 - 5
  • [62] Woźniak M, Ozuna G, Siczek K. Problems with glow plug - a review. Combust Engines. 2021;60. https://doi.org/10.19206/CE - 140114
  • [63] Furuhama S, Kobayashi Y. Development of a hot - surface - ignition hydrogen injection two - stroke engine. Int J Hydrogen Energy.1984;9(3):205–13. https://doi.org/10.1016/0360 - 3199(84)90120 - 4
  • [64] Welch A, Wallace J. Performance Characteristics of a Hydrogen - Fueled Diesel Engine with Ignition Assist. SAE Tech Pap. 1990;902070. https://doi.org/10.4271/902070
  • [65] Abo Alkibash, T. A., & Kuşdoğan, Ş.. Overview of Fuel Cell-Hybrid Power Sources Vehicle Technology: A Review. International Journal of Automotive Science And Technology, 2024:8(3), 260-272. https://doi.org/10.30939/ijastech..1432215
  • [66] Do, T. T. . Global Optimization of Hysteresis Energy Management Strategies for Fuel Cell Hybrid Electric Vehicles. International Journal of Automotive Science And Technology, 2025:9(2), 276-283. https://doi.org/10.30939/ijastech..1691411
  • [67] Verhelst S, Demuynck J, Sierens R, Scarcelli R, Matthias NS, Wallner T. Update on the progress of hydrogen - fueled internal combustion engines. In: Renewable Hydrogen Technologies. 2013. p. 381–400. https://doi.org/10.1016/B978 - 0 - 444 - 56352 - 1.00016 - 7
  • [68] McTaggart - Cowan GP, Rogak SN, Munshi SR, Hill PG, Bushe WK. Combustion in a heavy - duty direct - injection engine using hydrogen–methane blend fuels. Int J Engine Res. 2009;10(1):1–3. https://doi.org/10.1243/14680874jer02008
  • [69] Andeobu L, Wibowo S, Grandhi S. Renewable hydrogen for the energy transition in Australia - Current trends, challenges and future directions. International Journal of Hydrogen Energy. 2024;87:1207 - 23. https://doi.org/10.1016/j.ijhydene.2024.08.499
  • [70] Pandey JK, Kumar GN. Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine. Energy. 2022;239:122468. https://doi.org/10.1016/j.energy.2021.122468
  • [71] Suresh D, Porpatham E. Influence of high compression ratio and hydrogen addition on the performance and emissions of a lean burn spark ignition engine fueled by ethanol - gasoline. Int J Hydrogen Energy. 2023;48(38):14433–48. https://doi.org/10.1016/j.ijhydene.2022.12.275
  • [72] Hao D, Mehra RK, Luo S, Nie Z, Ren X, Fanhua M. Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition. Int J Hydrogen Energy. 2020;45(8):5309–25. https://doi.org/10.1016/j.ijhydene.2019.04.039
  • [73] Gupta P, Tong D, Wang J, Zhuge W, Yan C, Wu Y, et al. Well - to - wheels total energy and GHG emissions of HCNG heavy - duty vehicles in China: Case of EEV qualified EURO 5 emissions scenario. Int J Hydrogen Energy. 2020;45(15):8002–14. https://doi.org/10.1016/j.ijhydene.2020.01.025
  • [74] Niu R, Yu X, Du Y, Xie H, Wu H, Sun Y. Effect of hydrogen proportion on lean burn performance of a dual fuel SI engine using hydrogen direct - injection. Fuel. 2016;186:792–9. https://doi.org/10.1016/j.fuel.2016.09.021
  • [75] Purayil ST, Hamdan MO, Al - Omari SA, Selim MY, Elnajjar E. Influence of ethanol–gasoline–hydrogen and methanol–gasoline–hydrogen blends on the performance and hydrogen knock limit of a lean - burn spark ignition engine. Fuel. 2024;377:132825. https://doi.org/10.1016/j.fuel.2024.132825
  • [76] Cruccolini V, Discepoli G, Cimarello A, Battistoni M, Mariani F, Grimaldi CN, Dal Re M. Lean combustion analysis using a corona discharge igniter in an optical engine fueled with methane and a hydrogen - methane blend. Fuel. 2020;259:116290. https://doi.org/10.1016/j.fuel.2019.116290
  • [77] Jhang SR, Chen KS, Lin SL, Lin YC, Cheng WL. Reducing pollutant emissions from a heavy - duty diesel engine by using hydrogen additions. Fuel. 2016;172:89–95. https://doi.org/10.1016/j.fuel.2016.01.032
  • [78] Barrios CC, Domínguez - Sáez A, Hormigo D. Influence of hydrogen addition on combustion characteristics and particle number and size distribution emissions of a TDI diesel engine. Fuel. 2017;199:162–8. https://doi.org/10.1016/j.fuel.2017.02.089
  • [79] Tsujimura T, Suzuki Y. The utilization of hydrogen in hydrogen/diesel dual fuel engine. Int J Hydrogen Energy. 2017;42(19):14019–29. https://doi.org/10.1016/j.ijhydene.2017.01.152
  • [80] Karagöz Y, Sandalcı T, Yüksek L, Dalkılıç AS. Engine performance and emission effects of diesel burns enriched by hydrogen on different engine loads. Int J Hydrogen Energy. 2015;40(20):6702–13. https://doi.org/10.1016/j.ijhydene.2015.03.141
  • [81] Laguado - Ramírez R, Hernandez - Villamizar F, Duarte - Forero J. Comparative assessment of emissions, performance, and economics parameters for a dual–fuel diesel generator operating with rice bran biodiesel and hydrogen. Heliyon. 2024;10(11):e32109. https://doi.org/10.1016/j.heliyon.2024.e32109
  • [82] Luo Z, Hu Y, Xu H, Gao D, Li W. Cost - economic analysis of hydrogen for China’s fuel cell transportation field. Energies. 2020;13(24):6522. https://doi.org/10.3390/en13246522
  • [83] Huang Z, Yuan S, Wei H, Zhong L, Hu Z, Liu Z, Liu C, Wei H, Zhou L. Effects of hydrogen injection timing and injection pressure on mixture formation and combustion characteristics of a hydrogen direct injection engine. Fuel. 2024;363:130966. https://doi.org/10.1016/j.fuel.2024.130966
  • [84] Verhelst S, Wallner T. Hydrogen - fueled internal combustion engines. Prog Energy Combust Sci. 2009;35(6):490–527. https://doi.org/10.1016/j.pecs.2009.08.001
  • [85] Mrozik W, Rajaeifar MA, Heidrich O, Christensen P. Environmental impacts, pollution sources and pathways of spent lithium - ion batteries. Energy Environ Sci. 2021;14(12):6099–121. https://doi.org/10.1039/d1ee00691f
  • [86] Sharma SS, Manthiram A. Towards more environmentally and socially responsible batteries. Energy Environ Sci. 2020;13(11):4087–97. https://doi.org/10.1039/d0ee02511a
  • [87] Kiss A, Szabó B, Kun K, Weltsch Z. Prediction of Efficiency, Performance, and Emissions Based on a Validated Simulation Model in Hydrogen–Gasoline Dual - Fuel Internal Combustion Engines. Energies. 2024;17(22):5680. https://doi.org/10.3390/en17225680
  • [88] Durkin K, Khanafer A, Liseau P, Stjernström - Eriksson A, Svahn A, Tobiasson L, Andrade TS, Ehnberg J. Hydrogen - powered vehicles: comparing the powertrain efficiency and sustainability of fuel cell versus internal combustion engine cars. Energies. 2024;17(5):1085. https://doi.org/10.3390/en17051085
  • [89] Tanış, İ., Arslan, T. A., Kocakulak, T., … Taşkın, G.. Fabrication and Characterization of Sulfonated Polysulfone Membrane with Different Thicknesses for Proton Exchange Membrane Fuel Cell. Engineering Perspective, 2024: 4(3), 100-107. https://doi.org/10.29228/eng.pers.77899
There are 89 citations in total.

Details

Primary Language English
Subjects Internal Combustion Engines, Automotive Combustion and Fuel Engineering
Journal Section Articles
Authors

Ammar Trakić 0009-0000-2450-4391

Jasmin šehović 0000-0001-7226-6922

Dževad Bibić 0000-0003-3762-9243

Publication Date September 30, 2025
Submission Date July 9, 2025
Acceptance Date July 31, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Trakić, A., šehović, J., & Bibić, D. (2025). An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization. International Journal of Automotive Science And Technology, 9(3), 310-324. https://doi.org/10.30939/ijastech..1738230
AMA Trakić A, šehović J, Bibić D. An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization. IJASTECH. September 2025;9(3):310-324. doi:10.30939/ijastech.1738230
Chicago Trakić, Ammar, Jasmin šehović, and Dževad Bibić. “An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization”. International Journal of Automotive Science And Technology 9, no. 3 (September 2025): 310-24. https://doi.org/10.30939/ijastech. 1738230.
EndNote Trakić A, šehović J, Bibić D (September 1, 2025) An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization. International Journal of Automotive Science And Technology 9 3 310–324.
IEEE A. Trakić, J. šehović, and D. Bibić, “An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization”, IJASTECH, vol. 9, no. 3, pp. 310–324, 2025, doi: 10.30939/ijastech..1738230.
ISNAD Trakić, Ammar et al. “An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization”. International Journal of Automotive Science And Technology 9/3 (September2025), 310-324. https://doi.org/10.30939/ijastech. 1738230.
JAMA Trakić A, šehović J, Bibić D. An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization. IJASTECH. 2025;9:310–324.
MLA Trakić, Ammar et al. “An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization”. International Journal of Automotive Science And Technology, vol. 9, no. 3, 2025, pp. 310-24, doi:10.30939/ijastech. 1738230.
Vancouver Trakić A, šehović J, Bibić D. An Overview of Hydrogen Applications in Internal Combustion Engines Toward Transport Decarbonization. IJASTECH. 2025;9(3):310-24.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png