Araştırma Makalesi
BibTex RIS Kaynak Göster

Horoz ibiği (Amaranthus albus L.) Bitkisinde Riboflavin ve PEG 6000 uygulamalarının Bazı Büyüme Parametreleri ve Biyokimyasal Özellikler Üzerine Etkisi

Yıl 2024, , 282 - 292, 25.08.2024
https://doi.org/10.24180/ijaws.1457261

Öz

Bu çalışmada horoz ibiği (Amaranthus albus L.) bitkisinde PEG 6000 ile oluşturulan farklı ozmotik basınçta (kontrol, -0.5 MPa, -1.0 MPa ve -1.5 MPa) kuraklık stresi ile Riboflavin (B2) (kontrol, 0.1, 0.5, 1.0 ve 2.0 mM) uygulamalarının büyüme parametreleri ile biyokimyasal değişiklikler üzerine etkilerini belirlemek amacıyla yürütülmüştür. Araştırmada horoz ibiği bitkisinin yaprak sayısı (12.33-21.04 adet bitki-1), yaprak uzunluğu (5.44-8.22 cm), yaprak alan indeksi (4.23-25.04 cm2), yaprak taze ağırlığı (0.22-0.64 g), yaprak kuru ağırlığı (0.06-0.08 g), antosiyaninler (23.69-64.47 dx), fenolikler (94.46-177.79 mg g-1), flavanoid(47.04-99.58 mg g-1), klorofil A (16.35-24.14 mg g-1), klorofil B (10.22-18.54 mg g-1), toplam klorofil (27.20-42.37 mg g-1) ve karetonoidler (3.90-5.36 mg g-1) gibi özellikler incelenmiştir. Çalışma sonucunda; PEG 6000 ile oluşturulan kuraklık stresi sonucunda yaprak sayısı, yaprak uzunluğu, yaprak alan indeksi, yaprak taze ağırlığı klorofil a ve b ile toplam klorofil miktarı kısmen ya da tamamen azaldığı görülmüştür. Araştırmada antosiyanin, flavonoid ve fenolik madde içeriklerinde ise artışlara neden olduğu belirlenmiştir. Kuraklık stresinin yaprak kuru ağırlığı ve karetonoid miktarları etkisi ise istatistiksel olarak önemsiz bulunmuştur. Bu çalışmada kuraklık stresine karşı riboflavin (B2) dozu uygulamalarının incelenen fizyolojik ve biyokimyasal özelliklerden yaprak sayısı, yaprak tazeliği, yaprak alan indeksi, yaprak turgoru, fenolik ve flavonoid içerikleri üzerine olumlu, stresin etkilerini azaltıcı ve düzenleyici etkiye sahip olduğu tespit edilmiştir.

Kaynakça

  • Abood, N.M., & Abdulhameed, Z. A. J. (2017). Response of some sorghum (Sorghum bicolor, L. Moench) cultivars to foliar spraying of riboflavin growth, grain yield and proline content plant production, Mansoura Univiversty, 8(11), 1093 -1101. https://doi.org/10.21608/jpp.2017.41117.
  • Alegbejo, J. O. ( 2013). Nutritional value and utilization of Amaranthus (Amaranthus spp.) – a review. Bayero Journal of Pure and Applied Sciences, 6 (1), 136-143. https://doi.org/10.4314/bajopas. v6i1.27.
  • Alp, Y., & Kabay, T. (2017). Kuraklık stresinin bazı yerli ve ticari domates çeşitlerinde bitki gelişimi üzerine etkileri.Yüzüncü Yıl Üniversitesi, Tarım Bilimleri Dergisi, 27(3), 387-395. https://doi.org 10.29133/yyutbd.307257
  • Anonim. (2015). Amaranthaceae plant family. https://www.britannica.com/plant/Amaranthaceae. [Erişim tarihi: 13 Şubat 2024].
  • Arendt, E. K., & Zannini, E. (2013). Cereal grains for the food and beverage ındustries. woodhead Publishing Series in Food Sciences, Technology and Nutrition. 248, Philadelphia, USA. https://doi.org 10.1533/9780857098924
  • Ashoori, M., & Saedisomeolia, A. (2014). Riboflavin (vitamin B2) and oxidative stress: a review. British Journal of Nutrition, 111:1985–1991. https://doi.org 10.1017/S0007114514000178
  • Belton, P. S., & Taylor, J. R. (2002). Pseudocereals and less common cereals: grain properties and utilization potential.Springer Science & Business Media. 269 p. https://doi.org/0.1046j.1439-037X.2003.00019_5.x.
  • Berghofer, E., & Schoenlechner, R. (2002). Grain amaranth. In Belton P, Taylor J: Pseudocereals and less common cereals: grain properties and utilization potential. Springer-Verlag, 219-260. https://doi.org 10.1007/978-3-662-09544-7_7.
  • Bressan, R. (1989). The proteins of grain amaranth. Food Review International, 5, 13-38.
  • Çetin, E. S., Uzunlar, F., & Baydar, N.G. (2011). UV-C uygulamasının Gamay üzüm çeşidine ait kalluslarda sekonder metabolit üretimi üzerine etkileri. Gıda, 36(6), 319-326. https://doi.org/10.5505/gida.2013.76486
  • Cerovic, Z. G., Ghozlen, N. B., Milhade, C., Obert, M., Debuisson, S., & Moigne, M. L. (2015). Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. Journal Agriculture Food Chemistry, 63(14), 3669-3680. https://doi.org/10.1021/acs.jafc.5b00304.
  • Deng, B., Jin, X., Yang, Y., Lin, Z., & Zhang, Y. (2014). The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Journal of Plant Growth Regulation, 72, 269–277. https://doi.org/10.1007/s10725 0139858-8
  • Dixon, R. A., Choudhary, A. D., Dalkin, D., Edwards, R., Fahrendorf, T., Gowri, G., Harrison, M. J., Lamb, C. J., Loake, G. J., Maxwell, C. A., Orr, J., & Paiva, N. L. (1992). Molecular biology of stressinduced phenylpropanoid and isoflavonoid biosynthesis in alfalfa. In Phenolic Metabolism in Plants, H.A. Stafford and R.K. Ibrahim,eds (New York: Plenum Press), 91-138.
  • Dong, H. S., & Beer, S. V. (2000). Riboflavin induces disease resistancein plants by activating a novel signal trend Transduction pathway.Phy-topathology, 90, 801–811. https://doi.org/10.1094/PHYTO.2000.90.8.801
  • Ercişli, S., Eşitken, A. & Güleryüz, M. (1999). The effect of vitamines on the seed germination of apricots. Acta Horti cultural Sciences, 488: 437-440. https://doi.org/10.17660/ActaHortic.1999.488.69.
  • Ergun, M., Özbay, N., Osmanoğlu, A., & Çalkır, A. (2014). Sebze ve tahıl olarak amarant (Amaranthus spp.) bitkisi. Iğdır Üniversitesi Fen Bilimleri Dergisi, 4(3), 21-28.
  • Farooq, M., Basra, S. M. A., Wahid, A., Cheema, Z. A., Cheema, M. A., & Khaliq, A. (2008). Physiological role of exogeno applied glycinebetaine in improve drought tolerance of fine grain aromatic rice (Oryza sativa L.). J. Agronomy Crop Sciencesi, 194, 325-333. https://doi.org/10.1111/j.1439-037X.2008.00323.x
  • Gitelson, A. A. Gritz, U., & Merzlyak, M. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology,160, 271-282. https://doi.org/10.1078/0176-1617-00887
  • Gläßgen, W. E., Rose, A., Madlung, J., Koch, W., Gleitz, J., & Seitz, H. U. (1998). Regulation of enzymes involved in anthocyanin biosynthesis in carrot cell cultures in response to treatment with ultraviolet light and fungal elicitors. Planta, 20:4, 490-498. https://doi.org/ 10.1007/s004250050283
  • Grzesiak, S., Grzesiak, M. T., Filek, W., & Stabryla, J. (2003). Evaluation of physiological screening tests for breeding drought resistant triticale. Acta Physiologiae Plantarum, 25 (1), 29–37. https://doi.org/10.1007/s11738-003-0033-0
  • Haider, M. S., Kurjogi, M. M., Khalil-ur-Rehman, M., Pervez, T., Songtao, J, Fiaz, M., & Fang, J. (2018). Drought stress revealed physiological, biochemical and gene-expressional variations in ‘Yoshihime’peach (Prunus persica L.) cultivar. Journal of Plant Interactions, 13(1), 83-90. https://doi.org/10.1080/17429145.2018.1432772
  • Hajibabaee, M., Azizi, F., & Zargari, K. (2012). Effect of drought stress on some morphological, physiological and agronomic traits in various foliage corn hybrids. American-Eurasian Journal of Agricultural and Environmental Science, 12, 890-896. https://doi.org/10.5829/idosi.aejaes.2012.12.07.1751
  • Jordan, D. B., Bacot, K. O., Carlson, T. J., Kesseli, M., & Viitanen, P. V. (1999) Plant ribofavin biosynthesis. Cloning, chloroplast localization, expression, purifcation, and partial characterization of spinach lumazine synthase. JournalBiology Chemistry, 274, 22114–22121. https://doi.org/10.1074/jbc.274.31.22114
  • Kalefetoğlu, T. T., & Ekmekçi, Y. (2005). The effects of drought on plants and tolerance mechanisms. Gazi Üniversitesi Fen Bilimleri Dergisi, 18(4), 723-740.
  • Kaya, A., & İnan, M. (2017). Tuz (NaCl) Stresine maruz kalan reyhan (Ocimum basilicum L.) bitkisinde bazı morfolojik, fizyolojik ve biyokimyasal parametreler üzerine salisilik asidin etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 332- 342. https://doi.org/10.29050/harranziraat.339489
  • Keleş, Y., & Öncel, I. (2002). Buğday fidelerinde büyüme ve pigment içeriği üzerine sıcaklık ve su-tuz streslerinin birlikte etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 3(1), 143-152.
  • Keskin, B., Temel, S., Çakmakcı, S., & Tosun, R. (2021). Bazı Horoz ibiği (Amaranthus spp.) çeşitlerinin kurak ve sulu şartlardaki tohum verimleri ve verim unsurları üzerine araştırma. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (1), 11-19. https://doi.org/10.17097/ataunizfd.715545.
  • Kılıçaslan, S. C., Yıldırım, E., Ekinci, M., & Kul, R. (2020). Kuraklık stresinin fasulyede bitki gelişimi, bazı fizyolojik ve biyokimyasal özellikler üzerine etkisi. Fen Bilimleri Enstitüsü Dergisi, 36(2), 264-273. Kıpçak, S., Ekincialp, A., Erdinç, Ç., Kabay, T., & Şensoy, S. (2019). Tuz stresinin farklı fasulye genotiplerinde bazı besin elementi içeriği ile toplam antioksidan ve toplam fenol içeriğine etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (1),136-144. https://doi.org/10.29133/yyutbd.504748
  • Kuşvuran, Ş., & Daşgan, H. Y. (2017). Effects of drought stress on physiological and biochemical changes in (Phaseolus vulgaris L.), Legume Research, 40(1), 55-62. https://doi.org/10.18805/lr.v0i0.7025
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleranslı fizyolojik mekanizmaları arasındaki bağlantılar [Doktora Tezi]. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü s. 356, Adana/Turkiye.
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transaction, 11, 591– 592. https://doi.org/10.1042/bst0110591
  • Mohammadian, R., Moghaddam, M., Rahimian, H., & Sadeghian, S.Y. (2005). Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turk Journal of Agriculture and Forestry, 29, 357-368.
  • Mori, T., & Sakurai, M. (1995). Effects of riboflavin and increasedsucrose on anthocyanin production in suspended straw-berry cell cultures. Plant Science, 110,147–153. https://doi.org/10.1111/j.1365-2621.1996.tb12184.x
  • Obanda, M., & Owuor, P. O. (1997).Flavanol composition and caffeine content of green leaf as quality potential indicatör of Kenyan black teas. Journal of the Science of Food and Agriculture, 74, 209-215.
  • Özaslan, C., & Kendal, E. (2014). Lice domatesi üretim alanlarındaki yabancı otların belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4 (3), 29-34.
  • Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, J., Luyck, M., Cazin, M., Cazin, J. C., Bailleul, F., & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls an flour. Journal Ethnopharmacol, 72, 35-40. https://doi.org/ 10.1016/s0378-8741(00)00196-3 Rastogi, A., & Shukla, S. (2013). Amaranth: A new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition, 53, 109-125. https://doi.org/ 10.1080/10408398.2010.517876
  • Rodriguez, S., Wilhelmi, R., Cervilla, L., Blasco, B., Rios, J., Rosales, A., Romero, L., & Ruiz, J. (2010). Genotypic in the differences insome physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178, 30–40. https://doi.org/10.1016/j.plantsci.2009.10.001
  • Sandoval, F. J., Zhang, Y., & Roje, S. (2008). Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids. Journal of Biological Chemistry, 283, 30890– 30900. https://doi.org/ 10.1074/jbc.M803416200
  • Sevindik, B. (2021). Farklı dozlarda PEG 6000 uygulamalarının safranda in vitro rejenerasyona etkileri. Turkish Journal of Forest Science, 5(2), 408-417.
  • Temur, B., Akhoundnejad, Y., H., Daşgan, Y., & Ersoy, L. (2023). Kuraklık stresi altında yetişen domatesin makro mikro element ve antioksidan içeriğine yapraktan uygulanan potasyumlu gübrelerin etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 15-29. https://doi.org/10.29050/harranziraat.1214740
  • Tunçtürk, R., Tunçtürk, M., & Oral. E., (2021). Kuraklık stresi koşullarında yetiştirilen soya fasulyesinin (Glycine max L.)bazı fizyolojik özellikleri üzerine rizobacterium (PGPR) uygulamalarının etkisi. Çanakkale Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 9 (2), 359-368. https://doi.org/10.33202/comuagri.881226
  • Ülker, M. Oral, E., Altuner, F., Özdemir, B., Salihi, S.J., & Demiratmaca, Ş. (2022). Non-cereal graın. advance studıes ın scıence. ISPEC Yayın Evi: 1-18.
  • Wang, S., & Tzeng, D. D.(1998). Methionine-riboflavin mixtures with surfac-tants and metal ions reduce powdery mildew infection in strawberryplants. Proceedings of the National Science Council, Republic of China. Part B, Life Sciences, 123, 987–991.
  • Yaban, İ., & Kabay, T. (2019). Kuraklık stresinin Şanliurfara biberinde iyon klorofil ve enzim içerikleri üzerine etkisi. Toprak Su Dergisi, 8 (1), (11-17).
  • Yarnia, M., Khorshidi Benam, M. B., Farajzadeh Memari Tabrizi, E., Nobari, N., & Ahmadzadeh, V. (2011). Effect of planting dates and density in drought stress condition on yield and yield components of amaranth cv. Koniz. Advances in Environmental Biology, 5(6), 1139-1149.
  • Yüzbaşıoğlu, E., Dalyan, E., & Akpınar, I. (2017). Changes in photosynthetic pigments, anthocyanin content and antioxidant enzyme activities of maize (Zea mays L.) seedlings under high temperature stress conditions. Trakya University Journal of Natural Sciences, 18(2), 97-104.

Effect of Riboflavin and PEG 6000 Applications on Some Growth Parameters and Biochemical Properties in (Amaranthus albus L.)

Yıl 2024, , 282 - 292, 25.08.2024
https://doi.org/10.24180/ijaws.1457261

Öz

In this study, drought stress and Riboflavin (B2) (control, 0.1, 0.5, 1.0 and 2.0 mM) in amaranth (Amaranthus albus L.) plant at different osmotic pressures (control, -0.5 MPa, -1.0 MPa and -1.5 MPa) created with PEG 6 000. mM) applications on growth parameters and biochemical changes. In the research, the number of leaves of the amaranth plant (12.33-21.04 number plant-1), leaf length (5.44-8.22 cm), leaf area index (4.23-25.04 cm2), leaf fresh weıght (0.22-0.64 g), leaf dry weight (0.06-0.08 g), anthocyanin (23.69-64.47 dx), phenolic (94.46-177.79 mg g-1), flavonoid (47.04-99.58 mg g-1), chlorophyll A (16.35-24.14 mg g-1), chlorophyll B (10.22-18.54 mg g-1), total chlorophyll (27.20-42.37 mg g-1) and carotenoid (3.90-5.36 mg g-1). As a result of drought stress caused by PEG 6000, it was observed that the number of leaves, leaf length, leaf area index, leaf freshness weight, chlorophyll a and b and total chlorophyll decreased partially or completely. In the research, it was determined that it caused increases in anthocyanin, flavonoid and phenolic substance contents. The effect of drought stress on leaf dry weight and carotenoid amounts was found to be statistically insignificant. In this study, it was determined that riboflavin (B2) dose applications against drought stress had a positive, reducing and regulating effect on the effects of stress on the number of leaves, leaf freshness, leaf area index, leaf turgor, phenolic and flavonoid contents, which are among the physiological and biochemical characteristics examined.

Kaynakça

  • Abood, N.M., & Abdulhameed, Z. A. J. (2017). Response of some sorghum (Sorghum bicolor, L. Moench) cultivars to foliar spraying of riboflavin growth, grain yield and proline content plant production, Mansoura Univiversty, 8(11), 1093 -1101. https://doi.org/10.21608/jpp.2017.41117.
  • Alegbejo, J. O. ( 2013). Nutritional value and utilization of Amaranthus (Amaranthus spp.) – a review. Bayero Journal of Pure and Applied Sciences, 6 (1), 136-143. https://doi.org/10.4314/bajopas. v6i1.27.
  • Alp, Y., & Kabay, T. (2017). Kuraklık stresinin bazı yerli ve ticari domates çeşitlerinde bitki gelişimi üzerine etkileri.Yüzüncü Yıl Üniversitesi, Tarım Bilimleri Dergisi, 27(3), 387-395. https://doi.org 10.29133/yyutbd.307257
  • Anonim. (2015). Amaranthaceae plant family. https://www.britannica.com/plant/Amaranthaceae. [Erişim tarihi: 13 Şubat 2024].
  • Arendt, E. K., & Zannini, E. (2013). Cereal grains for the food and beverage ındustries. woodhead Publishing Series in Food Sciences, Technology and Nutrition. 248, Philadelphia, USA. https://doi.org 10.1533/9780857098924
  • Ashoori, M., & Saedisomeolia, A. (2014). Riboflavin (vitamin B2) and oxidative stress: a review. British Journal of Nutrition, 111:1985–1991. https://doi.org 10.1017/S0007114514000178
  • Belton, P. S., & Taylor, J. R. (2002). Pseudocereals and less common cereals: grain properties and utilization potential.Springer Science & Business Media. 269 p. https://doi.org/0.1046j.1439-037X.2003.00019_5.x.
  • Berghofer, E., & Schoenlechner, R. (2002). Grain amaranth. In Belton P, Taylor J: Pseudocereals and less common cereals: grain properties and utilization potential. Springer-Verlag, 219-260. https://doi.org 10.1007/978-3-662-09544-7_7.
  • Bressan, R. (1989). The proteins of grain amaranth. Food Review International, 5, 13-38.
  • Çetin, E. S., Uzunlar, F., & Baydar, N.G. (2011). UV-C uygulamasının Gamay üzüm çeşidine ait kalluslarda sekonder metabolit üretimi üzerine etkileri. Gıda, 36(6), 319-326. https://doi.org/10.5505/gida.2013.76486
  • Cerovic, Z. G., Ghozlen, N. B., Milhade, C., Obert, M., Debuisson, S., & Moigne, M. L. (2015). Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. Journal Agriculture Food Chemistry, 63(14), 3669-3680. https://doi.org/10.1021/acs.jafc.5b00304.
  • Deng, B., Jin, X., Yang, Y., Lin, Z., & Zhang, Y. (2014). The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Journal of Plant Growth Regulation, 72, 269–277. https://doi.org/10.1007/s10725 0139858-8
  • Dixon, R. A., Choudhary, A. D., Dalkin, D., Edwards, R., Fahrendorf, T., Gowri, G., Harrison, M. J., Lamb, C. J., Loake, G. J., Maxwell, C. A., Orr, J., & Paiva, N. L. (1992). Molecular biology of stressinduced phenylpropanoid and isoflavonoid biosynthesis in alfalfa. In Phenolic Metabolism in Plants, H.A. Stafford and R.K. Ibrahim,eds (New York: Plenum Press), 91-138.
  • Dong, H. S., & Beer, S. V. (2000). Riboflavin induces disease resistancein plants by activating a novel signal trend Transduction pathway.Phy-topathology, 90, 801–811. https://doi.org/10.1094/PHYTO.2000.90.8.801
  • Ercişli, S., Eşitken, A. & Güleryüz, M. (1999). The effect of vitamines on the seed germination of apricots. Acta Horti cultural Sciences, 488: 437-440. https://doi.org/10.17660/ActaHortic.1999.488.69.
  • Ergun, M., Özbay, N., Osmanoğlu, A., & Çalkır, A. (2014). Sebze ve tahıl olarak amarant (Amaranthus spp.) bitkisi. Iğdır Üniversitesi Fen Bilimleri Dergisi, 4(3), 21-28.
  • Farooq, M., Basra, S. M. A., Wahid, A., Cheema, Z. A., Cheema, M. A., & Khaliq, A. (2008). Physiological role of exogeno applied glycinebetaine in improve drought tolerance of fine grain aromatic rice (Oryza sativa L.). J. Agronomy Crop Sciencesi, 194, 325-333. https://doi.org/10.1111/j.1439-037X.2008.00323.x
  • Gitelson, A. A. Gritz, U., & Merzlyak, M. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology,160, 271-282. https://doi.org/10.1078/0176-1617-00887
  • Gläßgen, W. E., Rose, A., Madlung, J., Koch, W., Gleitz, J., & Seitz, H. U. (1998). Regulation of enzymes involved in anthocyanin biosynthesis in carrot cell cultures in response to treatment with ultraviolet light and fungal elicitors. Planta, 20:4, 490-498. https://doi.org/ 10.1007/s004250050283
  • Grzesiak, S., Grzesiak, M. T., Filek, W., & Stabryla, J. (2003). Evaluation of physiological screening tests for breeding drought resistant triticale. Acta Physiologiae Plantarum, 25 (1), 29–37. https://doi.org/10.1007/s11738-003-0033-0
  • Haider, M. S., Kurjogi, M. M., Khalil-ur-Rehman, M., Pervez, T., Songtao, J, Fiaz, M., & Fang, J. (2018). Drought stress revealed physiological, biochemical and gene-expressional variations in ‘Yoshihime’peach (Prunus persica L.) cultivar. Journal of Plant Interactions, 13(1), 83-90. https://doi.org/10.1080/17429145.2018.1432772
  • Hajibabaee, M., Azizi, F., & Zargari, K. (2012). Effect of drought stress on some morphological, physiological and agronomic traits in various foliage corn hybrids. American-Eurasian Journal of Agricultural and Environmental Science, 12, 890-896. https://doi.org/10.5829/idosi.aejaes.2012.12.07.1751
  • Jordan, D. B., Bacot, K. O., Carlson, T. J., Kesseli, M., & Viitanen, P. V. (1999) Plant ribofavin biosynthesis. Cloning, chloroplast localization, expression, purifcation, and partial characterization of spinach lumazine synthase. JournalBiology Chemistry, 274, 22114–22121. https://doi.org/10.1074/jbc.274.31.22114
  • Kalefetoğlu, T. T., & Ekmekçi, Y. (2005). The effects of drought on plants and tolerance mechanisms. Gazi Üniversitesi Fen Bilimleri Dergisi, 18(4), 723-740.
  • Kaya, A., & İnan, M. (2017). Tuz (NaCl) Stresine maruz kalan reyhan (Ocimum basilicum L.) bitkisinde bazı morfolojik, fizyolojik ve biyokimyasal parametreler üzerine salisilik asidin etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 332- 342. https://doi.org/10.29050/harranziraat.339489
  • Keleş, Y., & Öncel, I. (2002). Buğday fidelerinde büyüme ve pigment içeriği üzerine sıcaklık ve su-tuz streslerinin birlikte etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 3(1), 143-152.
  • Keskin, B., Temel, S., Çakmakcı, S., & Tosun, R. (2021). Bazı Horoz ibiği (Amaranthus spp.) çeşitlerinin kurak ve sulu şartlardaki tohum verimleri ve verim unsurları üzerine araştırma. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (1), 11-19. https://doi.org/10.17097/ataunizfd.715545.
  • Kılıçaslan, S. C., Yıldırım, E., Ekinci, M., & Kul, R. (2020). Kuraklık stresinin fasulyede bitki gelişimi, bazı fizyolojik ve biyokimyasal özellikler üzerine etkisi. Fen Bilimleri Enstitüsü Dergisi, 36(2), 264-273. Kıpçak, S., Ekincialp, A., Erdinç, Ç., Kabay, T., & Şensoy, S. (2019). Tuz stresinin farklı fasulye genotiplerinde bazı besin elementi içeriği ile toplam antioksidan ve toplam fenol içeriğine etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (1),136-144. https://doi.org/10.29133/yyutbd.504748
  • Kuşvuran, Ş., & Daşgan, H. Y. (2017). Effects of drought stress on physiological and biochemical changes in (Phaseolus vulgaris L.), Legume Research, 40(1), 55-62. https://doi.org/10.18805/lr.v0i0.7025
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleranslı fizyolojik mekanizmaları arasındaki bağlantılar [Doktora Tezi]. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü s. 356, Adana/Turkiye.
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transaction, 11, 591– 592. https://doi.org/10.1042/bst0110591
  • Mohammadian, R., Moghaddam, M., Rahimian, H., & Sadeghian, S.Y. (2005). Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turk Journal of Agriculture and Forestry, 29, 357-368.
  • Mori, T., & Sakurai, M. (1995). Effects of riboflavin and increasedsucrose on anthocyanin production in suspended straw-berry cell cultures. Plant Science, 110,147–153. https://doi.org/10.1111/j.1365-2621.1996.tb12184.x
  • Obanda, M., & Owuor, P. O. (1997).Flavanol composition and caffeine content of green leaf as quality potential indicatör of Kenyan black teas. Journal of the Science of Food and Agriculture, 74, 209-215.
  • Özaslan, C., & Kendal, E. (2014). Lice domatesi üretim alanlarındaki yabancı otların belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4 (3), 29-34.
  • Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, J., Luyck, M., Cazin, M., Cazin, J. C., Bailleul, F., & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls an flour. Journal Ethnopharmacol, 72, 35-40. https://doi.org/ 10.1016/s0378-8741(00)00196-3 Rastogi, A., & Shukla, S. (2013). Amaranth: A new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition, 53, 109-125. https://doi.org/ 10.1080/10408398.2010.517876
  • Rodriguez, S., Wilhelmi, R., Cervilla, L., Blasco, B., Rios, J., Rosales, A., Romero, L., & Ruiz, J. (2010). Genotypic in the differences insome physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178, 30–40. https://doi.org/10.1016/j.plantsci.2009.10.001
  • Sandoval, F. J., Zhang, Y., & Roje, S. (2008). Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids. Journal of Biological Chemistry, 283, 30890– 30900. https://doi.org/ 10.1074/jbc.M803416200
  • Sevindik, B. (2021). Farklı dozlarda PEG 6000 uygulamalarının safranda in vitro rejenerasyona etkileri. Turkish Journal of Forest Science, 5(2), 408-417.
  • Temur, B., Akhoundnejad, Y., H., Daşgan, Y., & Ersoy, L. (2023). Kuraklık stresi altında yetişen domatesin makro mikro element ve antioksidan içeriğine yapraktan uygulanan potasyumlu gübrelerin etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 27(1), 15-29. https://doi.org/10.29050/harranziraat.1214740
  • Tunçtürk, R., Tunçtürk, M., & Oral. E., (2021). Kuraklık stresi koşullarında yetiştirilen soya fasulyesinin (Glycine max L.)bazı fizyolojik özellikleri üzerine rizobacterium (PGPR) uygulamalarının etkisi. Çanakkale Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 9 (2), 359-368. https://doi.org/10.33202/comuagri.881226
  • Ülker, M. Oral, E., Altuner, F., Özdemir, B., Salihi, S.J., & Demiratmaca, Ş. (2022). Non-cereal graın. advance studıes ın scıence. ISPEC Yayın Evi: 1-18.
  • Wang, S., & Tzeng, D. D.(1998). Methionine-riboflavin mixtures with surfac-tants and metal ions reduce powdery mildew infection in strawberryplants. Proceedings of the National Science Council, Republic of China. Part B, Life Sciences, 123, 987–991.
  • Yaban, İ., & Kabay, T. (2019). Kuraklık stresinin Şanliurfara biberinde iyon klorofil ve enzim içerikleri üzerine etkisi. Toprak Su Dergisi, 8 (1), (11-17).
  • Yarnia, M., Khorshidi Benam, M. B., Farajzadeh Memari Tabrizi, E., Nobari, N., & Ahmadzadeh, V. (2011). Effect of planting dates and density in drought stress condition on yield and yield components of amaranth cv. Koniz. Advances in Environmental Biology, 5(6), 1139-1149.
  • Yüzbaşıoğlu, E., Dalyan, E., & Akpınar, I. (2017). Changes in photosynthetic pigments, anthocyanin content and antioxidant enzyme activities of maize (Zea mays L.) seedlings under high temperature stress conditions. Trakya University Journal of Natural Sciences, 18(2), 97-104.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Agrokimyasallar ve Biyositler (Uygulama dahil), Agronomi, Endüstri Bitkileri, Tarımda Bitki Biyokimyası ve Fizyolojisi, Tıbbi ve Aromatik Bitkiler
Bölüm Tarla Bitkileri
Yazarlar

Erol Oral 0000-0001-9413-1092

Murat Tunçtürk 0000-0002-7995-0599

Rüveyde Tunçtürk 0000-0002-3759-8232

Tülay Toprak 0000-0002-5576-2526

Erken Görünüm Tarihi 24 Ağustos 2024
Yayımlanma Tarihi 25 Ağustos 2024
Gönderilme Tarihi 22 Mart 2024
Kabul Tarihi 27 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Oral, E., Tunçtürk, M., Tunçtürk, R., Toprak, T. (2024). Horoz ibiği (Amaranthus albus L.) Bitkisinde Riboflavin ve PEG 6000 uygulamalarının Bazı Büyüme Parametreleri ve Biyokimyasal Özellikler Üzerine Etkisi. International Journal of Agricultural and Wildlife Sciences, 10(2), 282-292. https://doi.org/10.24180/ijaws.1457261

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a