Research Article
BibTex RIS Cite

Effect of phosphogypsum use as a waste recycling on GHG emissions by mineral carbonisation method

Year 2022, , 102 - 107, 31.12.2022
https://doi.org/10.32571/ijct.1187158

Abstract

The release of greenhouse gas emissions into the atmosphere as a result of anthropogenic sources and industrial applications has triggered the increase in global temperatures called global warming and related climate change. Phosphogypsum (PG) is a by-product of the wet process phosphoric acid (H3PO4) production process, which chemically consists of calcium sulfate dihydrate (CaSO4·2H2O) with some impurities. Annual PG accumulation has reached 300 Mtons and a strategy is needed to ensure efficient, continuous and bulk consumption. Due to the high amount of calcium it contains, PG is a material suitable for use in CO2 capture and storage processes to form stable solid carbonate compounds. This process, called mineral carbonisation of PG, contributes to sustainable development goals by providing the multiple benefits of both the utilisation of an industrial by-product and the realisation of CO2 capture and storage technology.

References

  • Ajam, L.; Ouezdou, M B.; Felfoul, H. S.; El Mensi, R. Characterisation of the Tunisian phosphogypsum and its valorisation in clay bricks, Constr Build Mater, 2009;23:3240-3247.
  • Altiner, M. Effect of alkaline types on the production of calcium carbonate particles from gypsum waste for fixation of CO2 by mineral carbonation, Int. J. Coal Prep. Util, 2019;39: 113-131. Azdarpour, A.; Asadullah, M.; Junin, R.; Manan, M.; Hamidi, H.İ; Mohammadian, E.; Direct carbonation of red gypsum to produce solid carbonates, Fuel Process. Technol.;2014; 126: 429- 434.
  • Bao, W.; Zhao, H. Li; H.; Li, S.; Lin, W. Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure, J. CO2 Util.; 2017;17: 125-136.
  • Berghout, N.; van den Broek, M.; Faaij, A. Techno- economic performance and challenges of applying CO2 capture in the industry: A case study of five industrial plants, Int. J. Greenh. Gas Control.; 2013;17: 259-279.
  • Binnemans, K.; Jones, P. T.; Blanpain, B.; van Gerven, T.; Pontikes, Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review, J. Clean. Prod.; 2015; 99: 17-38.
  • Canovas, C. R.; Chapron, S.; Arrachart, G.; Pellet- Rostaing, S. Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials, J. Clean. Prod.; 2019;219: 225-235.
  • Canovas, C. R.; Perez-Lopez, R.; Macias, F.; Chapron, S.; Nieto, J. M.; Pellet-Rostaing, S. Exploration of fertilizer industry wastes as potential source of critical raw materials, J. Clean. Prod.; 2017;143: 497-505.
  • Cardenas-Escudero, C.; Morales- Florez, V.; Perez- Lopez, R.; Santos, A.; Esquivias, L. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration, J. Hazard. Mater.; 2011;196: 431-435.
  • Chen, J.; Wang, Y.; Shi, Q.;Peng, X.; Zheng, J. An international comparison analysis of CO2 emissions in the construction industry, Sustain. Dev.; 2021;29: 754-767.
  • Chernysh, Y.; Yakhnenko, O.; Chubur, V.; Roubik, H. Phosphogypsum recycling: A review of environmental issues, current trends, and prospects, Appl. Sci.; 2021;11: 1575-1585.
  • Choura, M.; Maalouf, F.; Keskes, M.; Cherif, F. Sulphur matrix from phosphogypsum: a sustainable route to waste valorisation, Beneficiation of Phosphates: New Thought, New Technology, New Development, 2012; 1:297-302.
  • Chen, Q.; Ding, W.; Sun, H.; Peng, T.; Ma, G. Indirect mineral carbonation of phosphogypsum for CO2 sequestration, Energy, 2020;206: 118148.
  • Danielik, V.; Fellner, P.; Jurisova, J.; Kralik, M. Determination of the reactivity of CaSO4.2H2O, Acta Chim. Slov.;2016; 9 : 1-5.
  • Davis, S. J.; Caldeira, K.; Matthews, D. H. Future CO2 emissions and climate change from existing energy infrastructure, Science, 2010;329: 1330-1333.
  • Dri, M.; Sanna, A.; Maroto-Valer, M. M. Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation, Fuel Process. Technol.; 2013;113: 114-122.
  • Dri, M.; Sanna, A.; Maroto-Valer, M. M. Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterisation of carbonated products, Appl. Energy, 2014,113: 515- 523.
  • Ennaciri, Y.; Bettach, M.; Cherrat, A.; Zegzouti, A. Conversion of phosphogypsum to sodium sulfate and calcium carbonate in aqueous solution, J. Mater. Environ. Sci.; 2016;7: 1925-1933.
  • Esquivias, L.; Morales-Florez, V.; Santos, A. 9- Carbon dioxide sequestration by phosphogypsum based procedure, Carbon Dioxide Sequestration in Cementitious Construction Materials, Woodhead Publishing Series in Civil and Structural Engineering.2018.
  • Gadikota, G.; Matter, J.; Kelemen, P.; Park, A. A. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3, Phys. Chem. Chem. Phys, 2014;16: 4679-4693.
  • Gibbins, J.; Chalmers, H. Carbon capture and storage, Energy Policy, 2008;36: 4317-4322.
  • Goodwin, P.; Katavouta, A.; Roussenov, V. M.; Foster, G. L.; Rohling, E. J.; Williams, R. G. Pathways to 1.5 °C and 2°C warming based on observational and geological constraints, Nat. Geosci.; 2018;11: 102-107.
  • Hammas- Nasri, I.; Elgharbi, S.; Ferhi, M.; Horchani-Naifer, K.; Ferid, M. Investigation of phosphogypsum valorisation by the integration of the Merseburg method, New J. Chem.; 2020;44: 8010-8017.
  • Hammi, K. M.; Hammi, H.; Hamzaoui, A. H. Use of mixture design approach for the optimisation and performance of cost- effective cementitious quaternary system: Portland cement- fly ash- silica fume- phosphogypsum, Chemistry Africa, 2021;4: 835-848.
  • Hanein, T.; Simoni, M.; Woo, C. L.; Provis, J. L.; Kinoshita, H. Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate, Energy Environ. Sci.; 2021;14: 6595-6604.
  • Huang, Y.; Qian, J.; Lu, L.; Zhang, W.; Wang, S.; Wang, W.; Cheng, X. Phosphogypsum as a component of calcium sulfoaluminate cement: Hazardous elements immobilisation, radioactivity and performances, J. Clean. Prod.; 2020;248: 119287-119296.
  • Hudson-Edwards, K. A.; Jamieson, H. E.; Lottermoser, B. G.; Mine wastes: Past, present, future, Elements, 2011;7: 375-380.
  • Huijgen, W. J. J.; Witkamp, G. J.; Comans, R. N. J. Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol.; 2005;39: 9676-9682.
  • Idboufrade, A.; Bouargane, B.; Ennasraoui, B.; Biyoune, M. G.; Bachar, A.; Bakiz, B.; Atbir, A.; Billah, S. M. Phosphogypsum two-step-ammonia-carbonation resulting in ammonium sulfate and calcium carbonate synthesis: Effect of the molar ratio OH-/Ca2+ on the conversion process, Waste Biomass Valor.; 2021;93.
  • IFA, Phosphogypsum: Leadership, innovation, partnership, https://www.fertilizer.org/member/Download.aspx?PUBKEY=CF5FFAD6-0DBA-4473-BEE2-6D3B15280CBA (10.12.2021).
  • Jia, R.; Wang, Q.; Luo, T.; Reuse of phosphogypsum as hemihydrate gypsum: The negative effect and content control of H3PO4, Resour Conserv Recycl, 2021; 174: 105830-105840.
  • Kandil, A. T.; Cheira, M. F.; Gado, H. S.; Soliman, M. H.; Akl, H. M. Ammonium sulfate preparation from phosphogypsum waste, J. Radiat. Res. Appl. Sci.; 2017;10: 24-33.
  • King, A. D.; Sniderman, J. M. K.; Dittus, A: J.; Brown, J. R.; Hawkins, E.; Ziehn, T. Studying climate stabilisation at Paris Agreement levels, Nat. Clim. Change.; 2021;11: 1010-1013.
  • Kuramochi, T.; Ramirez, A.; Turkenburg, W.; Faaij, A. Comparative assessment of CO2 capture technologies for carbon- intensive industrial processes, Prog. Energy Combust. Sci.; 2012;38: 87-112.
  • Lachehab, A.; MErtah, O.; Kherbeche, A.; Hassoune, H. Utilisation of phopshogypsum in CO2 mineral sequestration by producing potassium sulphate and calcium carbonate, Minerals Science for Energy Technologies, 2020;3: 611-625.
  • Lambert, A.; Tam, J.; Azimi, G. Microwave treatment for extraction of rare earth elements from phopshogypsum, Rare Met.; 2017; 1:47-53.
  • Li, Z.; Xie, Z.; Deng, J. He, D.; Zhao, H.; Liang, H. Leaching kinetics of rare earth elements in phosphoric acid from phosphate rock, Metals, 2021;11: 239-245.
  • Mattila, H. P.; Zevenhoven, R. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts, Front. Energy Res.; 2015;3: 48-55.
  • Metzger, R. A.; Benfors, G.; Hoffert, M. I. To bury or to burn: Optimum use of crop residues to reduce atmospheric CO2, Clim. Change, 2002;54: 369-374.
  • Min, C.; Shi, Y.; Liu, Z. Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag, Constr Build Mater, 2021;305: 124786.
  • Mosher, K.; He, J.; Liu, Y.; Rupp, E.; Wilcox, J. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems, Int. J. Coal Geol.; 2013;109-110: 36-44.
  • Oelkers E. H.; Gislason, S. R.; Matter, J. Mineral carbonation of CO2, Elements, 2008;4: 333-337.
  • Olajire, A. A. CO2 capture and separation technologies for end-of-pipe applications- A review, Energy,2010; 35: 2610-2628.
  • Olajire, A. A. A review of mineral carbonation technology in sequestration of CO2, J. Pet. Sci. Eng.; 2013;109: 364-392.
  • Ren.; K.; Cui, N.; Zhao, S.; Zheng, K.; Ji, X.; Feng, L.; Cheng, X.; Xie, N. Low-carbon sustainable composites from waste phosphogypsum and their environmental impacts, Cryst.; 2021;11: 719-725.
  • 46. Rendel, P. M. The kinetics and thermodynamics of gypsum precipitation under conditions relevant to CO2 geological storage, PhD Thesis, Ben-Gurion University, Israel.2018
  • Romero-Hermida, I.; Santos, A.; Perez-Lopez, R.; Garcia- Tenorio, R.; Esquivias, L.; Morales-Florez, V. New method for carbon dioxide mineralisation based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products, J. CO2 Util.; 2017;18: 15-22.
  • Romero-Hermida, M. I.; Flores-Ales, V.; Hurtado-Bermudez, S.J.; Santos, A.; Esquivias, L. Environmental impact of phosphogypsum-derived building materials, Int. J. Environ. Res. Public Health.; 2020;17: 4248-4255.
  • Rychkov, V. N.; Kirillov, E. V.; Kirilov, S. V.; Semenishchev, V. S.; Bunkov, G. M.; Botalov, M. S.; Smyshlyaev, D. V.; Malyshev, A. S. Recovery of rare earth elements from phosphogypsum, J. Clean. Prod.; 2018;196: 674-681.
  • Shang, D.; Geissler, B.; Mew, M.; Satalkina, L.; Zenk, L.; Tulsidas, H.; Barker, L.; El-Yahyaoui, A.; Hussein, A.; Taha, M.; Zheng, Y.; Wang, M.; Yao, Y.; Liu, X.; Deng, H.; Zhong, J.; Li, Z.; Steiner, G.; Haneklaus, N.; Unconventional uranium in China’s phosphate rock: Review and outlook, Renew. Sust. Energ. Rev.; 2021;140: 110740-110745.
  • Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M. M. A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev.; 2014;43: 8049-8080.
  • Snaebjörnsdottir, S. O.; Sigfusson, B.; MArieni, C.; Goldberg, D.; Gislason, S. R.; Oelkers, E. H. Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ.; 2020;1: 90-102.
  • Svensson, R.; Odenberger, M.; Johnsson, F.; Strömberg, L. Transportation systems for CO2 application to carbon capture and storage, Energy Convers. Manag.; 2004; 45: 2343-2353.
  • Tan, Y.; Process simulation of the influence of phosphate rock impurities on the production index of superphosphate, IOP Conf. Ser.: Earth Environ. Sci.; 2021;772: 012047-012055.
  • Xiao, W.; Yao, X.; Zhang, F. Recycling of oily sludge as a roadbed material utilizing phosphogypsum-based cementitious materials, Adv. Civ. Eng, 2019;1: 6280715-628725.
  • Xie, H.; Wang, J.; Hou, Z.; Wang, Y.; Liu, T.; Tang, L.; Jiang, W. CO2 sequestration through mineral carbonation of waste phosphogypsum using the technique of membrane electrolysis, Environ. Earth Sci.; 2016;75: 1216-1222.
  • Van Soest, H.; Elzen, M. G. J.; Vuuren, D. P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement, Nat. Commun.; 2021;12: 2140-2155.
  • Wei, Z.; Deng, Z. Research hotspots and trends of comprehensive utilisation of phosphogypsum: Bibliometric analysis, J. Environ. Radioact.; 2022;1:106778-106785.
  • Yadav, V. K.; Yadav, K. K.; Cabral- Pinto, M. M. S.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A. H.; Islam, S.; Khan, N. A. The processing of calcium rich agricultural and industrial waste for recovery of calcium carbonate and calcium oxide and their application for environmental cleanup: A review, Appl. Sci.; 2021;11: 4212-4217.
  • Yang, L.; Zhang, Y.; Yan, Y. (2016), Utilisation of original phosphogypsum as raw material for the preparation of self-leveling mortar, J. Clean. Prod.; 2016;127: 204-213.
  • Zandalinas, S. I.; Fritschi, F. B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster, Trends Plant Sci, 2021;26: 588-599.
  • Zhang, W.; Zhang, F.; Ma, L.; Yang, J.; Wei, Y.; Kong, D. CO2 capture and process reinforcement by hydrolysate of phosphogypsum decomposition products, J. CO2 Util, 2020;36: 253-262.
  • Zhao, H.; Li, H.; Bao, W.; Wang, C.; Li, S.; Lin, W. Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure, J. CO2 Util, 2015;11: 10-19.
  • Zhao, Q.; Liu, C.; Jiang, M.; Saxen, H.; Zevenhoven, R. Preparation of magnesium hydroxide from serpentinite by sulfuric acid leaching for CO2 mineral carbonation, Miner. Eng.; 2015;79: 116-124.
  • Zhao, S.; Ma, L.; Yang, J.; Zheng, D.; Liu, H.; Yang, J. Mechanism of CO2 capture technology based on the phosphogypsum reduction thermal decomposition process, Energy Fuels, 2017;31: 9824-9832.
Year 2022, , 102 - 107, 31.12.2022
https://doi.org/10.32571/ijct.1187158

Abstract

References

  • Ajam, L.; Ouezdou, M B.; Felfoul, H. S.; El Mensi, R. Characterisation of the Tunisian phosphogypsum and its valorisation in clay bricks, Constr Build Mater, 2009;23:3240-3247.
  • Altiner, M. Effect of alkaline types on the production of calcium carbonate particles from gypsum waste for fixation of CO2 by mineral carbonation, Int. J. Coal Prep. Util, 2019;39: 113-131. Azdarpour, A.; Asadullah, M.; Junin, R.; Manan, M.; Hamidi, H.İ; Mohammadian, E.; Direct carbonation of red gypsum to produce solid carbonates, Fuel Process. Technol.;2014; 126: 429- 434.
  • Bao, W.; Zhao, H. Li; H.; Li, S.; Lin, W. Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure, J. CO2 Util.; 2017;17: 125-136.
  • Berghout, N.; van den Broek, M.; Faaij, A. Techno- economic performance and challenges of applying CO2 capture in the industry: A case study of five industrial plants, Int. J. Greenh. Gas Control.; 2013;17: 259-279.
  • Binnemans, K.; Jones, P. T.; Blanpain, B.; van Gerven, T.; Pontikes, Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review, J. Clean. Prod.; 2015; 99: 17-38.
  • Canovas, C. R.; Chapron, S.; Arrachart, G.; Pellet- Rostaing, S. Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials, J. Clean. Prod.; 2019;219: 225-235.
  • Canovas, C. R.; Perez-Lopez, R.; Macias, F.; Chapron, S.; Nieto, J. M.; Pellet-Rostaing, S. Exploration of fertilizer industry wastes as potential source of critical raw materials, J. Clean. Prod.; 2017;143: 497-505.
  • Cardenas-Escudero, C.; Morales- Florez, V.; Perez- Lopez, R.; Santos, A.; Esquivias, L. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration, J. Hazard. Mater.; 2011;196: 431-435.
  • Chen, J.; Wang, Y.; Shi, Q.;Peng, X.; Zheng, J. An international comparison analysis of CO2 emissions in the construction industry, Sustain. Dev.; 2021;29: 754-767.
  • Chernysh, Y.; Yakhnenko, O.; Chubur, V.; Roubik, H. Phosphogypsum recycling: A review of environmental issues, current trends, and prospects, Appl. Sci.; 2021;11: 1575-1585.
  • Choura, M.; Maalouf, F.; Keskes, M.; Cherif, F. Sulphur matrix from phosphogypsum: a sustainable route to waste valorisation, Beneficiation of Phosphates: New Thought, New Technology, New Development, 2012; 1:297-302.
  • Chen, Q.; Ding, W.; Sun, H.; Peng, T.; Ma, G. Indirect mineral carbonation of phosphogypsum for CO2 sequestration, Energy, 2020;206: 118148.
  • Danielik, V.; Fellner, P.; Jurisova, J.; Kralik, M. Determination of the reactivity of CaSO4.2H2O, Acta Chim. Slov.;2016; 9 : 1-5.
  • Davis, S. J.; Caldeira, K.; Matthews, D. H. Future CO2 emissions and climate change from existing energy infrastructure, Science, 2010;329: 1330-1333.
  • Dri, M.; Sanna, A.; Maroto-Valer, M. M. Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation, Fuel Process. Technol.; 2013;113: 114-122.
  • Dri, M.; Sanna, A.; Maroto-Valer, M. M. Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterisation of carbonated products, Appl. Energy, 2014,113: 515- 523.
  • Ennaciri, Y.; Bettach, M.; Cherrat, A.; Zegzouti, A. Conversion of phosphogypsum to sodium sulfate and calcium carbonate in aqueous solution, J. Mater. Environ. Sci.; 2016;7: 1925-1933.
  • Esquivias, L.; Morales-Florez, V.; Santos, A. 9- Carbon dioxide sequestration by phosphogypsum based procedure, Carbon Dioxide Sequestration in Cementitious Construction Materials, Woodhead Publishing Series in Civil and Structural Engineering.2018.
  • Gadikota, G.; Matter, J.; Kelemen, P.; Park, A. A. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3, Phys. Chem. Chem. Phys, 2014;16: 4679-4693.
  • Gibbins, J.; Chalmers, H. Carbon capture and storage, Energy Policy, 2008;36: 4317-4322.
  • Goodwin, P.; Katavouta, A.; Roussenov, V. M.; Foster, G. L.; Rohling, E. J.; Williams, R. G. Pathways to 1.5 °C and 2°C warming based on observational and geological constraints, Nat. Geosci.; 2018;11: 102-107.
  • Hammas- Nasri, I.; Elgharbi, S.; Ferhi, M.; Horchani-Naifer, K.; Ferid, M. Investigation of phosphogypsum valorisation by the integration of the Merseburg method, New J. Chem.; 2020;44: 8010-8017.
  • Hammi, K. M.; Hammi, H.; Hamzaoui, A. H. Use of mixture design approach for the optimisation and performance of cost- effective cementitious quaternary system: Portland cement- fly ash- silica fume- phosphogypsum, Chemistry Africa, 2021;4: 835-848.
  • Hanein, T.; Simoni, M.; Woo, C. L.; Provis, J. L.; Kinoshita, H. Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate, Energy Environ. Sci.; 2021;14: 6595-6604.
  • Huang, Y.; Qian, J.; Lu, L.; Zhang, W.; Wang, S.; Wang, W.; Cheng, X. Phosphogypsum as a component of calcium sulfoaluminate cement: Hazardous elements immobilisation, radioactivity and performances, J. Clean. Prod.; 2020;248: 119287-119296.
  • Hudson-Edwards, K. A.; Jamieson, H. E.; Lottermoser, B. G.; Mine wastes: Past, present, future, Elements, 2011;7: 375-380.
  • Huijgen, W. J. J.; Witkamp, G. J.; Comans, R. N. J. Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol.; 2005;39: 9676-9682.
  • Idboufrade, A.; Bouargane, B.; Ennasraoui, B.; Biyoune, M. G.; Bachar, A.; Bakiz, B.; Atbir, A.; Billah, S. M. Phosphogypsum two-step-ammonia-carbonation resulting in ammonium sulfate and calcium carbonate synthesis: Effect of the molar ratio OH-/Ca2+ on the conversion process, Waste Biomass Valor.; 2021;93.
  • IFA, Phosphogypsum: Leadership, innovation, partnership, https://www.fertilizer.org/member/Download.aspx?PUBKEY=CF5FFAD6-0DBA-4473-BEE2-6D3B15280CBA (10.12.2021).
  • Jia, R.; Wang, Q.; Luo, T.; Reuse of phosphogypsum as hemihydrate gypsum: The negative effect and content control of H3PO4, Resour Conserv Recycl, 2021; 174: 105830-105840.
  • Kandil, A. T.; Cheira, M. F.; Gado, H. S.; Soliman, M. H.; Akl, H. M. Ammonium sulfate preparation from phosphogypsum waste, J. Radiat. Res. Appl. Sci.; 2017;10: 24-33.
  • King, A. D.; Sniderman, J. M. K.; Dittus, A: J.; Brown, J. R.; Hawkins, E.; Ziehn, T. Studying climate stabilisation at Paris Agreement levels, Nat. Clim. Change.; 2021;11: 1010-1013.
  • Kuramochi, T.; Ramirez, A.; Turkenburg, W.; Faaij, A. Comparative assessment of CO2 capture technologies for carbon- intensive industrial processes, Prog. Energy Combust. Sci.; 2012;38: 87-112.
  • Lachehab, A.; MErtah, O.; Kherbeche, A.; Hassoune, H. Utilisation of phopshogypsum in CO2 mineral sequestration by producing potassium sulphate and calcium carbonate, Minerals Science for Energy Technologies, 2020;3: 611-625.
  • Lambert, A.; Tam, J.; Azimi, G. Microwave treatment for extraction of rare earth elements from phopshogypsum, Rare Met.; 2017; 1:47-53.
  • Li, Z.; Xie, Z.; Deng, J. He, D.; Zhao, H.; Liang, H. Leaching kinetics of rare earth elements in phosphoric acid from phosphate rock, Metals, 2021;11: 239-245.
  • Mattila, H. P.; Zevenhoven, R. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts, Front. Energy Res.; 2015;3: 48-55.
  • Metzger, R. A.; Benfors, G.; Hoffert, M. I. To bury or to burn: Optimum use of crop residues to reduce atmospheric CO2, Clim. Change, 2002;54: 369-374.
  • Min, C.; Shi, Y.; Liu, Z. Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag, Constr Build Mater, 2021;305: 124786.
  • Mosher, K.; He, J.; Liu, Y.; Rupp, E.; Wilcox, J. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems, Int. J. Coal Geol.; 2013;109-110: 36-44.
  • Oelkers E. H.; Gislason, S. R.; Matter, J. Mineral carbonation of CO2, Elements, 2008;4: 333-337.
  • Olajire, A. A. CO2 capture and separation technologies for end-of-pipe applications- A review, Energy,2010; 35: 2610-2628.
  • Olajire, A. A. A review of mineral carbonation technology in sequestration of CO2, J. Pet. Sci. Eng.; 2013;109: 364-392.
  • Ren.; K.; Cui, N.; Zhao, S.; Zheng, K.; Ji, X.; Feng, L.; Cheng, X.; Xie, N. Low-carbon sustainable composites from waste phosphogypsum and their environmental impacts, Cryst.; 2021;11: 719-725.
  • 46. Rendel, P. M. The kinetics and thermodynamics of gypsum precipitation under conditions relevant to CO2 geological storage, PhD Thesis, Ben-Gurion University, Israel.2018
  • Romero-Hermida, I.; Santos, A.; Perez-Lopez, R.; Garcia- Tenorio, R.; Esquivias, L.; Morales-Florez, V. New method for carbon dioxide mineralisation based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products, J. CO2 Util.; 2017;18: 15-22.
  • Romero-Hermida, M. I.; Flores-Ales, V.; Hurtado-Bermudez, S.J.; Santos, A.; Esquivias, L. Environmental impact of phosphogypsum-derived building materials, Int. J. Environ. Res. Public Health.; 2020;17: 4248-4255.
  • Rychkov, V. N.; Kirillov, E. V.; Kirilov, S. V.; Semenishchev, V. S.; Bunkov, G. M.; Botalov, M. S.; Smyshlyaev, D. V.; Malyshev, A. S. Recovery of rare earth elements from phosphogypsum, J. Clean. Prod.; 2018;196: 674-681.
  • Shang, D.; Geissler, B.; Mew, M.; Satalkina, L.; Zenk, L.; Tulsidas, H.; Barker, L.; El-Yahyaoui, A.; Hussein, A.; Taha, M.; Zheng, Y.; Wang, M.; Yao, Y.; Liu, X.; Deng, H.; Zhong, J.; Li, Z.; Steiner, G.; Haneklaus, N.; Unconventional uranium in China’s phosphate rock: Review and outlook, Renew. Sust. Energ. Rev.; 2021;140: 110740-110745.
  • Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M. M. A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev.; 2014;43: 8049-8080.
  • Snaebjörnsdottir, S. O.; Sigfusson, B.; MArieni, C.; Goldberg, D.; Gislason, S. R.; Oelkers, E. H. Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ.; 2020;1: 90-102.
  • Svensson, R.; Odenberger, M.; Johnsson, F.; Strömberg, L. Transportation systems for CO2 application to carbon capture and storage, Energy Convers. Manag.; 2004; 45: 2343-2353.
  • Tan, Y.; Process simulation of the influence of phosphate rock impurities on the production index of superphosphate, IOP Conf. Ser.: Earth Environ. Sci.; 2021;772: 012047-012055.
  • Xiao, W.; Yao, X.; Zhang, F. Recycling of oily sludge as a roadbed material utilizing phosphogypsum-based cementitious materials, Adv. Civ. Eng, 2019;1: 6280715-628725.
  • Xie, H.; Wang, J.; Hou, Z.; Wang, Y.; Liu, T.; Tang, L.; Jiang, W. CO2 sequestration through mineral carbonation of waste phosphogypsum using the technique of membrane electrolysis, Environ. Earth Sci.; 2016;75: 1216-1222.
  • Van Soest, H.; Elzen, M. G. J.; Vuuren, D. P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement, Nat. Commun.; 2021;12: 2140-2155.
  • Wei, Z.; Deng, Z. Research hotspots and trends of comprehensive utilisation of phosphogypsum: Bibliometric analysis, J. Environ. Radioact.; 2022;1:106778-106785.
  • Yadav, V. K.; Yadav, K. K.; Cabral- Pinto, M. M. S.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A. H.; Islam, S.; Khan, N. A. The processing of calcium rich agricultural and industrial waste for recovery of calcium carbonate and calcium oxide and their application for environmental cleanup: A review, Appl. Sci.; 2021;11: 4212-4217.
  • Yang, L.; Zhang, Y.; Yan, Y. (2016), Utilisation of original phosphogypsum as raw material for the preparation of self-leveling mortar, J. Clean. Prod.; 2016;127: 204-213.
  • Zandalinas, S. I.; Fritschi, F. B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster, Trends Plant Sci, 2021;26: 588-599.
  • Zhang, W.; Zhang, F.; Ma, L.; Yang, J.; Wei, Y.; Kong, D. CO2 capture and process reinforcement by hydrolysate of phosphogypsum decomposition products, J. CO2 Util, 2020;36: 253-262.
  • Zhao, H.; Li, H.; Bao, W.; Wang, C.; Li, S.; Lin, W. Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure, J. CO2 Util, 2015;11: 10-19.
  • Zhao, Q.; Liu, C.; Jiang, M.; Saxen, H.; Zevenhoven, R. Preparation of magnesium hydroxide from serpentinite by sulfuric acid leaching for CO2 mineral carbonation, Miner. Eng.; 2015;79: 116-124.
  • Zhao, S.; Ma, L.; Yang, J.; Zheng, D.; Liu, H.; Yang, J. Mechanism of CO2 capture technology based on the phosphogypsum reduction thermal decomposition process, Energy Fuels, 2017;31: 9824-9832.
There are 64 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Ahmet Ozan Gezerman 0000-0002-0039-4615

Publication Date December 31, 2022
Published in Issue Year 2022

Cite

APA Gezerman, A. O. (2022). Effect of phosphogypsum use as a waste recycling on GHG emissions by mineral carbonisation method. International Journal of Chemistry and Technology, 6(2), 102-107. https://doi.org/10.32571/ijct.1187158
AMA Gezerman AO. Effect of phosphogypsum use as a waste recycling on GHG emissions by mineral carbonisation method. Int. J. Chem. Technol. December 2022;6(2):102-107. doi:10.32571/ijct.1187158
Chicago Gezerman, Ahmet Ozan. “Effect of Phosphogypsum Use As a Waste Recycling on GHG Emissions by Mineral Carbonisation Method”. International Journal of Chemistry and Technology 6, no. 2 (December 2022): 102-7. https://doi.org/10.32571/ijct.1187158.
EndNote Gezerman AO (December 1, 2022) Effect of phosphogypsum use as a waste recycling on GHG emissions by mineral carbonisation method. International Journal of Chemistry and Technology 6 2 102–107.
IEEE A. O. Gezerman, “Effect of phosphogypsum use as a waste recycling on GHG emissions by mineral carbonisation method”, Int. J. Chem. Technol., vol. 6, no. 2, pp. 102–107, 2022, doi: 10.32571/ijct.1187158.
ISNAD Gezerman, Ahmet Ozan. “Effect of Phosphogypsum Use As a Waste Recycling on GHG Emissions by Mineral Carbonisation Method”. International Journal of Chemistry and Technology 6/2 (December 2022), 102-107. https://doi.org/10.32571/ijct.1187158.
JAMA Gezerman AO. Effect of phosphogypsum use as a waste recycling on GHG emissions by mineral carbonisation method. Int. J. Chem. Technol. 2022;6:102–107.
MLA Gezerman, Ahmet Ozan. “Effect of Phosphogypsum Use As a Waste Recycling on GHG Emissions by Mineral Carbonisation Method”. International Journal of Chemistry and Technology, vol. 6, no. 2, 2022, pp. 102-7, doi:10.32571/ijct.1187158.
Vancouver Gezerman AO. Effect of phosphogypsum use as a waste recycling on GHG emissions by mineral carbonisation method. Int. J. Chem. Technol. 2022;6(2):102-7.