Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 199 - 208, 29.12.2025
https://doi.org/10.32571/ijct.1656838

Abstract

References

  • Abdul Mubarak, N. S., Foo, K. Y., Schneider, R., Abdelhameed, R. M., & Sabar, S. (2022). The chemistry of MIL-125 based materials: Structure, synthesis, modification strategies and photocatalytic applications. In Journal of Environmental Chemical Engineering, 10(1), 106883. https://doi.org/10.1016/j.jece.2021.106883
  • Abebe, A., & Hailemariam, T. (2016). Synthesis and Assessment of Antibacterial Activities of Ruthenium(III) Mixed Ligand Complexes Containing 1,10-Phenanthroline and Guanide. Bioinorganic Chemistry and Applications, 3607924. https://doi.org/10.1155/2016/3607924
  • Cai, W., Yan, Y. T., Fan, X. D., Zhang, H., Lu, J. L., Wu, Y. L., Liu, J., Zhang, W. Y., & Wang, Y. Y. (2024). A new multi-functional Cd(II)-organic framework as a platform for high selective fluorescence sensing and dye adsorption. Journal of Molecular Structure, 1302, 137528.https://doi.org/10.1016/j.molstruc.2024.137528
  • Castellanos, N. J., Martinez Rojas, Z., Camargo, H. A., Biswas, S., & Granados-Oliveros, G. (2019). Congo red decomposition by photocatalytic formation of hydroxyl radicals ( OH) using titanium metal–organic frameworks. Transition Metal Chemistry, 44(1), 77–87. https://doi.org/10.1007/s11243-018-0271-z
  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295(5554), 469–472. https://doi.org/10.1126/science.1067208
  • Eltaweil, A. S., Elshishini, H. M., Ghatass, Z. F., & Elsubruiti, G. M. (2021). Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. Powder Technology, 379, 407-416. https://doi.org/10.1016/j.powtec.2020.10.084
  • F. Menges. (2019). “Spectragryph - optical spectroscopy software”, Version 1.2.13. http://www.effemm2.de/spectragryph/
  • Gang, S. Q., Yan, J. W., Liu, Z. Y., Yu, J. M., & Du, J. L. (2024). An anionic In(III)-MOF for efficient adsorption of CO2 from CO2/N2 mixture and dye removal. Chemical Engineering Science, 283, 119409.https://doi.org/10.1016/j.ces.2023.119409
  • Hazrati, M., & Safari, M. (2020). Cadmium-based metal–organic framework for removal of dye from aqueous solution. Environmental Progress and Sustainable Energy, 39(5), e13411. https://doi.org/10.1002/ep.13411
  • Healy, C., Patil, K. M., Wilson, B. H., Hermanspahn, L., Harvey-Reid, N. C., Howard, B. I., Kleinjan, C., Kolien, J., Payet, F., Telfer, S. G., Kruger, P. E., & Bennett, T. D. (2020). The thermal stability of metal-organic frameworks. In Coordination Chemistry Reviews, 419, 213388.https://doi.org/10.1016/j.ccr.2020.213388
  • T K, S., Pavithran, R., & A, V. (2021). Design of 3D-supramolecular metal organic framework of zinc as photocatalyst for the degradation of methylene blue through advanced oxidation process. Journal of Molecular Structure, 1245, 131039. https://doi.org/10.1016/j.molstruc.2021.131039
  • Kaur, G., & Sud, D. (2025). A Zn/Cd/Ni Metal–Organic Framework-Based Solid and Flexible Fluoroprobes for Highly Selective Detection of 4-Nitroaniline in Real Water Samples. Journal of Fluorescence, 35(5), 3139-3155. https://doi.org/10.1007/s10895-024-03698-6
  • Kumar, R., Bhargava, P., & Dvivedi, A. (2015). Synthesis and Characterization of A New Cadmium Complex, Cadmium [(1,10-phenanthroline)(8 hydroxyquinoline)]Cd(Phen)q. Procedia Materials Science, 10, 37–43. https://doi.org/10.1016/j.mspro.2015.06.023 Lázaro, I. A. (2020). A Comprehensive Thermogravimetric Analysis Multifaceted Method for the Exact Determination of the Composition of Multifunctional Metal-Organic Framework Materials. European Journal of Inorganic Chemistry, 45, 4284-4294. https://doi.org/10.1002/ejic.202000656
  • Sağlam, S., Türk, F. N., & Arslanoğlu, H. (2023). Use and applications of metal-organic frameworks (MOF) in dye adsorption: Review. In Journal of Environmental Chemical Engineering, 11(5), 110568. https://doi.org/10.1016/j.jece.2023.110568
  • Samsonowicz, M., Hrynaszkiewicz, T., Świsłocka, R., Regulska, E., & Lewandowski, W. (2005). Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. Journal of Molecular Structure, 744(747), 345–352.https://doi.org/10.1016/j.molstruc.2004.11.063
  • Singh, C., Mukhopadhyay, S., & Hod, I. (2021). Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Convergence, 8(1), 1-10. https://doi.org/10.1186/s40580-020-00251-6
  • Sun, C. Y., Wang, X. L., Qin, C., Jin, J. L., Su, Z. M., Huang, P., & Shao, K. Z. (2013). Solvatochromic behavior of chiral mesoporous metal-organic frameworks and their applications for sensing small molecules and separating cationic dyes. Chemistry - A European Journal, 19(11),3639-3645. https://doi.org/10.1002/chem.201203080
  • Sun, Y., Zheng, L., Yang, Y., Qian, X., Fu, T., Li, X., Yang, Z., Yan, H., Cui, C., & Tan, W. (2020). Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 12 (103), 1-29. https://doi.org/10.1007/s40820-020-00423-3
  • Wang, B., Zhang, X., Huang, H., Zhang, Z., Yildirim, T., Zhou, W., Xiang, S., & Chen, B. (2021). A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 14(2), 507–511. https://doi.org/10.1007/s12274-020-2713-0
  • Xiang, W., Wang, Q., Li, Z., Dong, J., Liu, J., Zhang, L., Xia, T., He, Y., & Zhao, D. (2024). Water-stable methyl-modified MOF and mixed matrix membrane for efficient adsorption and separation of cationic dyes. Separation and Purification Technology, 330, 125268. https://doi.org/10.1016/j.seppur.2023.125268
  • Xiao, M., Yue, H. D., Feng, X. J., Wang, Y. T., He, M. Y., Chen, Q., & Zhang, Z. H. (2020). A double-layered neutral cadmium-organic framework for selective adsorption of cationic organic dyes through electrostatic affinity. Journal of Solid State Chemistry, 288, 121376. https://doi.org/10.1016/j.jssc.2020.121376
  • Yaghi, O. M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423, 705-714. https://doi.org/10.1038/nature01650
  • Yang, L., Liu, Y. L., Liu, C. G., Fu, Y., & Ye, F. (2020). A cationic metal-organic framework for dye adsorption and separation based on column-chromatography. Journal of Molecular Liquids, 300, 112311. https://doi.org/10.1016/j.molliq.2019.112311
  • Yu, Y., Ren, Y., Shen, W., Deng, H., & Gao, Z. (2013). Applications of metal-organic frameworks as stationary phases in chromatography. TrAC - Trends in Analytical Chemistry, 50, 33-41. https://doi.org/10.1016/j.trac.2013.04.014
  • Yusuf, K., Aqel, A., & ALOthman, Z. (2014). Metal-organic frameworks in chromatography. In Journal of Chromatography A, 1348, 1-16. https://doi.org/10.1016/j.chroma.2014.04.095
  • Zhang, S. R., Li, J., Du, D. Y., Qin, J. S., Li, S. L., He, W. W., Su, Z. M., & Lan, Y. Q. (2015). A multifunctional microporous anionic metal-organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr3+. Journal of Materials Chemistry A, 3(46), 23426–23434. https://doi.org/10.1039/c5ta07427d

Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption

Year 2025, Volume: 9 Issue: 2, 199 - 208, 29.12.2025
https://doi.org/10.32571/ijct.1656838

Abstract

In the present study, two novel Cd-MOF structures, [Cd(phen)2(4-aba)2](NO3)2 (Cd-MOF (I)) and [Cd(phen)2(4-aba)2](CH3COO)2 (Cd-MOF(II)) were successfully prepared from 1,10-phenanthroline (phen) and 4-amino benzoic acid (4-aba) and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM) and Nuclear Magnetic Resonance Spectroscopy (1H NMR) analysis. The synthesized Cd-MOFs were evaluated for the adsorption of methylene blue (MB) and methyl orange(MO) dyes. The Cd-MOF(I) adsorption capacity was 8.6x10-4 mmol/g for MO. The results showed that Cd-MOF(I) is a more effective adsorbent in removing anionic methyl orange. An adsorption mechanism based on electrostatic interactions and hydrogen bonds was proposed. Contrary to expectations, the fact that Cd-MOF (II) has a structure surrounded by acetate anions caused it to have a lower adsorption capacity.

Thanks

The analyses presented in this paper were partly conducted at the Applied Science and Research Center (DEFAM) of Manisa Celal Bayar University in Turkey.

References

  • Abdul Mubarak, N. S., Foo, K. Y., Schneider, R., Abdelhameed, R. M., & Sabar, S. (2022). The chemistry of MIL-125 based materials: Structure, synthesis, modification strategies and photocatalytic applications. In Journal of Environmental Chemical Engineering, 10(1), 106883. https://doi.org/10.1016/j.jece.2021.106883
  • Abebe, A., & Hailemariam, T. (2016). Synthesis and Assessment of Antibacterial Activities of Ruthenium(III) Mixed Ligand Complexes Containing 1,10-Phenanthroline and Guanide. Bioinorganic Chemistry and Applications, 3607924. https://doi.org/10.1155/2016/3607924
  • Cai, W., Yan, Y. T., Fan, X. D., Zhang, H., Lu, J. L., Wu, Y. L., Liu, J., Zhang, W. Y., & Wang, Y. Y. (2024). A new multi-functional Cd(II)-organic framework as a platform for high selective fluorescence sensing and dye adsorption. Journal of Molecular Structure, 1302, 137528.https://doi.org/10.1016/j.molstruc.2024.137528
  • Castellanos, N. J., Martinez Rojas, Z., Camargo, H. A., Biswas, S., & Granados-Oliveros, G. (2019). Congo red decomposition by photocatalytic formation of hydroxyl radicals ( OH) using titanium metal–organic frameworks. Transition Metal Chemistry, 44(1), 77–87. https://doi.org/10.1007/s11243-018-0271-z
  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295(5554), 469–472. https://doi.org/10.1126/science.1067208
  • Eltaweil, A. S., Elshishini, H. M., Ghatass, Z. F., & Elsubruiti, G. M. (2021). Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. Powder Technology, 379, 407-416. https://doi.org/10.1016/j.powtec.2020.10.084
  • F. Menges. (2019). “Spectragryph - optical spectroscopy software”, Version 1.2.13. http://www.effemm2.de/spectragryph/
  • Gang, S. Q., Yan, J. W., Liu, Z. Y., Yu, J. M., & Du, J. L. (2024). An anionic In(III)-MOF for efficient adsorption of CO2 from CO2/N2 mixture and dye removal. Chemical Engineering Science, 283, 119409.https://doi.org/10.1016/j.ces.2023.119409
  • Hazrati, M., & Safari, M. (2020). Cadmium-based metal–organic framework for removal of dye from aqueous solution. Environmental Progress and Sustainable Energy, 39(5), e13411. https://doi.org/10.1002/ep.13411
  • Healy, C., Patil, K. M., Wilson, B. H., Hermanspahn, L., Harvey-Reid, N. C., Howard, B. I., Kleinjan, C., Kolien, J., Payet, F., Telfer, S. G., Kruger, P. E., & Bennett, T. D. (2020). The thermal stability of metal-organic frameworks. In Coordination Chemistry Reviews, 419, 213388.https://doi.org/10.1016/j.ccr.2020.213388
  • T K, S., Pavithran, R., & A, V. (2021). Design of 3D-supramolecular metal organic framework of zinc as photocatalyst for the degradation of methylene blue through advanced oxidation process. Journal of Molecular Structure, 1245, 131039. https://doi.org/10.1016/j.molstruc.2021.131039
  • Kaur, G., & Sud, D. (2025). A Zn/Cd/Ni Metal–Organic Framework-Based Solid and Flexible Fluoroprobes for Highly Selective Detection of 4-Nitroaniline in Real Water Samples. Journal of Fluorescence, 35(5), 3139-3155. https://doi.org/10.1007/s10895-024-03698-6
  • Kumar, R., Bhargava, P., & Dvivedi, A. (2015). Synthesis and Characterization of A New Cadmium Complex, Cadmium [(1,10-phenanthroline)(8 hydroxyquinoline)]Cd(Phen)q. Procedia Materials Science, 10, 37–43. https://doi.org/10.1016/j.mspro.2015.06.023 Lázaro, I. A. (2020). A Comprehensive Thermogravimetric Analysis Multifaceted Method for the Exact Determination of the Composition of Multifunctional Metal-Organic Framework Materials. European Journal of Inorganic Chemistry, 45, 4284-4294. https://doi.org/10.1002/ejic.202000656
  • Sağlam, S., Türk, F. N., & Arslanoğlu, H. (2023). Use and applications of metal-organic frameworks (MOF) in dye adsorption: Review. In Journal of Environmental Chemical Engineering, 11(5), 110568. https://doi.org/10.1016/j.jece.2023.110568
  • Samsonowicz, M., Hrynaszkiewicz, T., Świsłocka, R., Regulska, E., & Lewandowski, W. (2005). Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. Journal of Molecular Structure, 744(747), 345–352.https://doi.org/10.1016/j.molstruc.2004.11.063
  • Singh, C., Mukhopadhyay, S., & Hod, I. (2021). Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Convergence, 8(1), 1-10. https://doi.org/10.1186/s40580-020-00251-6
  • Sun, C. Y., Wang, X. L., Qin, C., Jin, J. L., Su, Z. M., Huang, P., & Shao, K. Z. (2013). Solvatochromic behavior of chiral mesoporous metal-organic frameworks and their applications for sensing small molecules and separating cationic dyes. Chemistry - A European Journal, 19(11),3639-3645. https://doi.org/10.1002/chem.201203080
  • Sun, Y., Zheng, L., Yang, Y., Qian, X., Fu, T., Li, X., Yang, Z., Yan, H., Cui, C., & Tan, W. (2020). Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 12 (103), 1-29. https://doi.org/10.1007/s40820-020-00423-3
  • Wang, B., Zhang, X., Huang, H., Zhang, Z., Yildirim, T., Zhou, W., Xiang, S., & Chen, B. (2021). A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 14(2), 507–511. https://doi.org/10.1007/s12274-020-2713-0
  • Xiang, W., Wang, Q., Li, Z., Dong, J., Liu, J., Zhang, L., Xia, T., He, Y., & Zhao, D. (2024). Water-stable methyl-modified MOF and mixed matrix membrane for efficient adsorption and separation of cationic dyes. Separation and Purification Technology, 330, 125268. https://doi.org/10.1016/j.seppur.2023.125268
  • Xiao, M., Yue, H. D., Feng, X. J., Wang, Y. T., He, M. Y., Chen, Q., & Zhang, Z. H. (2020). A double-layered neutral cadmium-organic framework for selective adsorption of cationic organic dyes through electrostatic affinity. Journal of Solid State Chemistry, 288, 121376. https://doi.org/10.1016/j.jssc.2020.121376
  • Yaghi, O. M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423, 705-714. https://doi.org/10.1038/nature01650
  • Yang, L., Liu, Y. L., Liu, C. G., Fu, Y., & Ye, F. (2020). A cationic metal-organic framework for dye adsorption and separation based on column-chromatography. Journal of Molecular Liquids, 300, 112311. https://doi.org/10.1016/j.molliq.2019.112311
  • Yu, Y., Ren, Y., Shen, W., Deng, H., & Gao, Z. (2013). Applications of metal-organic frameworks as stationary phases in chromatography. TrAC - Trends in Analytical Chemistry, 50, 33-41. https://doi.org/10.1016/j.trac.2013.04.014
  • Yusuf, K., Aqel, A., & ALOthman, Z. (2014). Metal-organic frameworks in chromatography. In Journal of Chromatography A, 1348, 1-16. https://doi.org/10.1016/j.chroma.2014.04.095
  • Zhang, S. R., Li, J., Du, D. Y., Qin, J. S., Li, S. L., He, W. W., Su, Z. M., & Lan, Y. Q. (2015). A multifunctional microporous anionic metal-organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr3+. Journal of Materials Chemistry A, 3(46), 23426–23434. https://doi.org/10.1039/c5ta07427d
There are 26 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Article
Authors

Pelin Sözen Aktaş 0000-0003-2140-2650

Submission Date March 13, 2025
Acceptance Date July 10, 2025
Early Pub Date November 17, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Sözen Aktaş, P. (2025). Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption. International Journal of Chemistry and Technology, 9(2), 199-208. https://doi.org/10.32571/ijct.1656838
AMA Sözen Aktaş P. Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption. Int. J. Chem. Technol. December 2025;9(2):199-208. doi:10.32571/ijct.1656838
Chicago Sözen Aktaş, Pelin. “Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption”. International Journal of Chemistry and Technology 9, no. 2 (December 2025): 199-208. https://doi.org/10.32571/ijct.1656838.
EndNote Sözen Aktaş P (December 1, 2025) Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption. International Journal of Chemistry and Technology 9 2 199–208.
IEEE P. Sözen Aktaş, “Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption”, Int. J. Chem. Technol., vol. 9, no. 2, pp. 199–208, 2025, doi: 10.32571/ijct.1656838.
ISNAD Sözen Aktaş, Pelin. “Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption”. International Journal of Chemistry and Technology 9/2 (December2025), 199-208. https://doi.org/10.32571/ijct.1656838.
JAMA Sözen Aktaş P. Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption. Int. J. Chem. Technol. 2025;9:199–208.
MLA Sözen Aktaş, Pelin. “Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption”. International Journal of Chemistry and Technology, vol. 9, no. 2, 2025, pp. 199-08, doi:10.32571/ijct.1656838.
Vancouver Sözen Aktaş P. Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption. Int. J. Chem. Technol. 2025;9(2):199-208.