Nickel Oxide Nanoparticles From An Organometallic Precursor: Preparatıon and Catalytic Insights
Year 2025,
Volume: 9 Issue: 2, 323 - 332, 29.12.2025
Ayşegül Şenocak
,
Hüseyin Akbaş
,
Seda Nur Şenkal
Abstract
This study introduces a cost-effective and practical approach for highly crystalline and pure nickel oxide nanoparticles (NiO NPs) from a novel nickel-dithiocarbamate complex that has not been previously reported, as well as we know. This complex was prepared through successive reactions of 4-chlorobenzaldehyde, 2-phenylethylamine, sodium borohydride, carbon disulfide, and nickel sulfate. The crystalline properties of the NPs were investigated by X-ray diffraction (XRD) spectroscopy, and the average crystal size was determined as 11.65 nm using the Debye–Scherrer equation. Morphological analysis revealed predominantly spherical and highly agglomerated particles, as expected. Zeta potential measurements indicated a value of -28.8 mV, confirming the moderate colloidal stability of the prepared NPs in suspension. Photocatalytic activity assessment revealed that the produced NPs achieved a degradation efficiency of 58.95% for the photodecomposition of methylene blue (MB), a common water pollutant. Besides, the NiO-catalyzed degradation of MB was determined to follow pseudo-first-order and Elovich kinetics.
Supporting Institution
TUBİTAK
Project Number
Tubitak 2209A-1919B012206213
Thanks
This study was supported by TUBİTAK (The Scientific and Technological Research Council of Türkiye) under the 2209-A Research Project Support Programme for Undergraduate Students (Project Number: 1919B012206213).
References
-
Abdullah, N. H., Zainal, Z., Silong, S., Tahir, M. I. M., Tan, K. -B. & Chang, S. -K. (2016). Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex. Materials Chemistry and Physics, 173, 33-41. https://doi.org/10.1016/j.matchemphys.2016.01.034
-
Ahmad, W., Bhatt, S. C., Verma, M., Kumar, V. & Kim, H. (2022). A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environmental Nanotechnology, Monitoring & Management, 18, Article 100674. https://doi.org/10.1016/j.enmm.2022.100674
-
Alibrahim, K. A., Al-Fawzan, F. F. & Refat, M. S. (2020). Synthesize Palladium And Nickel Oxide Nanoparticles in the Presence of 4-Aminoantipyrine Derivative as a Precursor: Decolorization Efficiency of Methylene Blue. Revue Roumaine de Chimie, 65(4), 343-352. https://doi.org/10.33224/rrch.2020.65.4.03
-
Bobinihi, F. F., Fayemi, O. E. & Onwudiwe, D. C. (2021). Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate. Materials Science in Semiconductor Processing, 121, Article 105315. https://doi.org/10.1016/j.mssp.2020.105315
-
Bobinihi, F. F., Onwudiwe, D. C. & Hosten, E. C. (2018). Synthesis and characterization of homoleptic group 10 dithiocarbamate complexes and heteroleptic Ni(II) complexes, and the use of the homoleptic Ni(II) for the preparation of nickel sulphide nanoparticles. Journal of Molecular Structure, 1164, 475-485. https://doi.org/10.1016/j.molstruc.2018.03.063
-
Dash, A., Ragavendran, C. & Rajendran, R. (2025). Biogenic Nickel Oxide Nanoparticles: Synthesis, Characterization and Biomedical Potential. Molecular Biotechnology, https://doi.org/10.1007/s12033-025-01413-9
-
Davar, F., Fereshteh, Z. & Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. Journal of Alloys and Compounds, 476(1-2), 797-801. https://doi.org/10.1016/j.jallcom.2008.09.121
-
El-Saied, F. A., Shakdofa, M. M. E. Ali, M. S., Faried, R. M. W., El-Asmy, A. & Madkour, M. (2021). Novel thiosemicarbazone complexes as single coordinated precursors for noble metal modified nickel oxide nanophotocatalysts. Journal of Physics and Chemistry of Solids, 157, Article 110218. https://doi.org/10.1016/j.jpcs.2021.110218
-
El-Samanody, El-S. A., El-Sawaf, A. K. & Madkour, M. (2019). Synthesis, crystal structure, spectral and thermal investigations of morpholinyldithiocarbamate complexes: A novel coordinated precursors for efficient metal oxide nanophotocatalysts. Inorganica Chimica Acta, 487, 307-315. https://doi.org/10.1016/j.ica.2018.12.027
-
Fereshteh, Z., Salavati-Niasari, M., Saberyan, K., Hosseinpour-Mashkani, S. & Tavakoli, F. (2012). Synthesis of Nickel Oxide Nanoparticles from Thermal Decomposition of a New Precursor. Journal of Cluster Science, 23, 577-583. https://doi.org/10.1007/s10876-012-0477-8
-
Firisa, S. G., Muleta, G. G. & Yimer, A. A. (2022). Synthesis of Nickel Oxide Nanoparticles and Copper-Doped Nickel Oxide Nanocomposites Using Phytolacca dodecandra L’Herit Leaf Extract and Evaluation of Its Antioxidant and Photocatalytic Activities. ACS Omega, 7(49), 44720–44732. https://doi.org/10.1021/acsomega.2c04042
-
García, A. B., Cuesta, A., Montes-Morán, M. A., Martínez-Alonso, A. & Tascón, J. M. D., 1997. Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers. Journal of Colloid and Interface Science, 192, 363-367. https://doi.org/10.1006/jcis.1997.5007
-
Gowda, S. A. M., Goveas, L. C. & Dakshayini, K. (2022). Adsorption of methylene blue by silver nanoparticles synthesized from Urena lobata leaf extract: kinetics and equilibrium analysis. Materials Chemistry and Physics, 288, Article 126431. https://doi.org/10.1016/j.matchemphys.2022.126431
-
Hollingsworth, N., Roffey, A., Islam, H. -U., Mercy, M., Roldan, A., Bras, W., Wolthers, M., Catlow, C. R. A., Sankar, G., Hogarth, G. & de Leeuw, N. H. (2014). Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles, Chemistry of Materials, 26(21), 6281-6292. https://doi.org/10.1021/cm503174z
-
Hosny, N. M., Rady, S. & El Dossoki, F. I. (2021). Adsorption of methylene blue onto synthesized Co3O4, NiO, CuO and ZnO nanoparticles. Journal of the Iranian Chemical Society, 19, 1877-1887. https://doi.org/10.1007/s13738-021-02424-4
-
Jaji, N. -D., Lee, H. L., Hussin, M. H., Md Akil, H., Zakaria, M. R. & Othman, M. B. H. (2020). Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnology Reviews. 9(1), 1456-1480. https://doi.org/10.1515/ntrev-2020-0109
-
Khalaji, A. D. (2013). Preparation and Characterization of NiO Nanoparticles via Solid-State Thermal Decomposition of Ni(II) Complex. Journal of Cluster Science, 24, 189-195. https://doi.org/10.1007/s10876-012-0542-3
-
Khalaji, A. D., Jafari K. & Rad S. M. (2015). Synthesis of NiO Nanoparticles via a Solid State Thermal Decomposition of Nickel(II) Schiff Base Complex Ni(caph)(N3)(NO3) as a New Precursor. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(6), 875-878. https://doi.org/10.1080/15533174.2013.862638
-
Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T. & Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14(2), Article 242. https://doi.org/10.3390/w14020242
-
Lakshmanan, P., Arulmozhi, R., Thirumaran, S. & Ciattini, S. (2022). Ni(II) dithiocarbamate: Synthesis, crystal structures, DFT studies and applications as precursors for nickel sulfide and nickel oxide nanoparticles. Polyhedron, 218, Article 115766. https://doi.org/10.1016/j.poly.2022.115766
-
Lakshmanan, P., Thirumaran, S. & Ciattini, S. (2020). Synthesis, spectral and structural studies on NiS2PN and NiS2P2 chromophores and use of Ni(II) dithiocarbamate to synthesize nickel sulfide and nickel oxide for photodegradation of dyes. Journal of Molecular Structure, 1220, Article 128704. https://doi.org/10.1016/j.molstruc.2020.128704
-
Madkour, M., Abdel-Monem, Y. K. & Al Sagheer, F. (2016) Controlled Synthesis of NiO and Co3O4 Nanoparticles from Different Coordinated Precursors: Impact of Precursor’s Geometry on the Nanoparticles Characteristics. Industrial & Engineering Chemistry Research, 55(50), 12733-12741. https://doi.org/10.1021/acs.iecr.6b03231
-
Manav, N., Mishra, A. K. & Kaushik, N. K. (2006). In vitro antitumour and antibacterial studies of some Pt(IV) dithiocarbamate complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65(1), 32-35. https://doi.org/10.1016/j.saa.2005.09.023
-
Nassar, M. Y., Aly, H. M., Abdelrahman, E. A. & Moustafa, M. E. (2017). Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye. Journal of Molecular Structure, 1143, 462-471. https://doi.org/10.1016/j.molstruc.2017.04.118
-
Nqombolo, A. & Ajibade, P. A. (2016). Synthesis and Spectral Studies of Ni(II) Dithiocarbamate Complexes and Their Use as Precursors for Nickel Sulphides Nanocrystals. Journal of Chemistry, 2016(1), Article 1293790. https://doi.org/10.1155/2016/1293790
-
Onwudiwe, D. C. & Ajibade, P. A. (2011). ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors. International Journal of Molecular Sciences, 12(9), 5538-5551. https://doi.org/10.3390/ijms12095538
-
Onwudiwe, D. C., Seheri, N. H., Hlungwani, L., Ferjani, H. & Rikhotso-Mbungela, R. (2024). NiO nanoparticles by thermal decomposition of complex and evaluation of the structural, morphological, and optical properties. Journal of Molecular Structure, 1317, Article 139084. https://doi.org/10.1016/j.molstruc.2024.139084
-
Patil, M., Patel, K., Abhale, Y., Rana, G., Alam, M. W., Kumar, A., Jabir, M., Adole, V., Rahdar, A. & Ghotekar, S. (2025). Unraveling the Mechanistic Approaches in the Bio-inspired Synthesis of NiO Nanoparticles and Their Diverse Applications-A Review. BioNanoScience, 15, Article 479. https://doi.org/10.1007/s12668-025-02076-1
-
Prakasam, B. A., Lahtinen M., Peuronen, A., Muruganandham, M., Kolehmainen, E., Haapaniemi, E. & Sillanpaa, M. (2015). Spectral and structural studies on Ni(II) dithiocarbamates: Nickel sulfide nanoparticles from a dithiocarbamate precursor. Inorganica Chimica Acta, 425, 239-246. https://doi.org/10.1016/j.ica.2014.09.016
-
Refat, M. S., Saad, H. A., Gobouri, A. A., Alsawat, M., Adam, A. M. A. & El-Megharbel, S. M. (2022). Charge transfer complexation between some transition metal ions with azo Schiff base donor as a smart precursor for synthesis of nano oxides: An adsorption efficiency for treatment of Congo red dye in wastewater. Journal of Molecular Liquids, 345, Article 117140. https://doi.org/10.1016/j.molliq.2021.117140
-
Revathy, M. S., Suman, R. Jayram, N. D., Geetha, D. & Chitravel, T. (2020). Multifarious properties of Bunsenite nanosphere NiO using coprecipitation method. Materials Today: Proceedings, 33(1), 1165-1174. https://doi.org/10.1016/j.matpr.2020.07.411
-
Roffey, A., Hollingsworth, N., Islam, H. -U., Mercy, M., Sankar, G., Catlow, C. R. A., Hogarth, G. & de Leeuw, N. H. (2016). Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors. Nanoscale, 8, 11067-11075. https://doi.org/10.1039/C6NR00053C
-
Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M. & Darroudi, M. (2020). Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess and Biosystems Engineering, 43, 1209-1218. https://doi.org/10.1007/s00449-020-02315-7
-
Salavati-Niasari, M., Mir, N. & Davar, F. (2010a). A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach. Journal of Alloys and Compounds, 493(1-2), 163-168. https://doi.org/10.1016/j.jallcom.2009.11.153
-
Salavati-Niasari, M., Davar, F. & Fereshteh, Z. (2010b). Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. Journal of Alloys and Compounds, 494(1-2), 410-414. https://doi.org/10.1016/j.jallcom.2010.01.063
-
Sathiyaraj, E., Gurumoorthya, G. & Thirumaran, S. (2015). Nickel(II) dithiocarbamate complexes containing the pyrrole moiety for sensing anions and synthesis of nickel sulfide and nickel oxide nanoparticles. New Journal of Chemistry, 39, 5336-5349. https://doi.org/10.1039/C4NJ02250E
-
Sathiyaraj, E., Thirumaran, S., Ciattini, S. & Selvanayagam, S. (2019). Synthesis and characterization of Ni(II) complexes with functionalized dithiocarbamates: New single source precursors for nickel sulfide and nickel-iron sulfide nanoparticles. Inorganica Chimica Acta, 498, 119162. https://doi.org/10.1016/j.ica.2019.119162
-
Sathiyaraj, E. & Thirumaran, S. (2012). Synthesis and spectral studies on Pb(II) dithiocarbamate complexes containing benzyl and furfuryl groups and their use as precursors for PbS nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 575-581. https://doi.org/10.1016/j.saa.2012.06.052
-
Sathiyaraj, E., Padmavathy, K., Kumar, C. U., Krishnan, K. G. & Ramalingan, C. (2017). Synthesis and spectral studies on Cd(II) dithiocarbamate complexes and their use as precursors for CdS nanoparticles. Journal of Molecular Structure, 1147, 103-113. https://doi.org/10.1016/j.molstruc.2017.06.080
-
Singh, A., Gogoi, H. P. & Barman, P. (2023). Synthesis of metal oxide nanoparticles by facile thermal decomposition of new Co(II), Ni(II), and Zn(II) Schiff base complexes- optical properties and photocatalytic degradation of methylene blue dye. Inorganica Chimica Acta, 546, Article 121292. https://doi.org/10.1016/j.ica.2022.121292
-
Srihasam, S., Thyagarajan, K., Korivi, M., Lebaka, V. R. & Mallem, S. P. R. (2020). Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties. Biomolecules, 10(1), Article 89. https://doi.org/10.3390/biom10010089
-
Şenocak, A., Akbaş, H. & İşgör, B. (2024). NiO Nanoparticles Via Calcination of Dithiocarbamate Pioneers: Characterization and Photocatalytic Activity. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 13(4), Article 969. https://doi.org/10.17798/bitlisfen.1485060
-
Thirumaran, S., Gurumoorthy, G., Arulmozhi, R. & Ciattini, S. (2020). Synthesis of nickel sulfide and nickel–iron sulfide nanoparticles from nickel dithiocarbamate complexes and their photocatalytic activities. Applied Organometallic Chemistry, 34(9), Article e5761. https://doi.org/10.1002/aoc.5761
Year 2025,
Volume: 9 Issue: 2, 323 - 332, 29.12.2025
Ayşegül Şenocak
,
Hüseyin Akbaş
,
Seda Nur Şenkal
Project Number
Tubitak 2209A-1919B012206213
References
-
Abdullah, N. H., Zainal, Z., Silong, S., Tahir, M. I. M., Tan, K. -B. & Chang, S. -K. (2016). Synthesis of zinc sulphide nanoparticles from thermal decomposition of zinc N-ethyl cyclohexyl dithiocarbamate complex. Materials Chemistry and Physics, 173, 33-41. https://doi.org/10.1016/j.matchemphys.2016.01.034
-
Ahmad, W., Bhatt, S. C., Verma, M., Kumar, V. & Kim, H. (2022). A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environmental Nanotechnology, Monitoring & Management, 18, Article 100674. https://doi.org/10.1016/j.enmm.2022.100674
-
Alibrahim, K. A., Al-Fawzan, F. F. & Refat, M. S. (2020). Synthesize Palladium And Nickel Oxide Nanoparticles in the Presence of 4-Aminoantipyrine Derivative as a Precursor: Decolorization Efficiency of Methylene Blue. Revue Roumaine de Chimie, 65(4), 343-352. https://doi.org/10.33224/rrch.2020.65.4.03
-
Bobinihi, F. F., Fayemi, O. E. & Onwudiwe, D. C. (2021). Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate. Materials Science in Semiconductor Processing, 121, Article 105315. https://doi.org/10.1016/j.mssp.2020.105315
-
Bobinihi, F. F., Onwudiwe, D. C. & Hosten, E. C. (2018). Synthesis and characterization of homoleptic group 10 dithiocarbamate complexes and heteroleptic Ni(II) complexes, and the use of the homoleptic Ni(II) for the preparation of nickel sulphide nanoparticles. Journal of Molecular Structure, 1164, 475-485. https://doi.org/10.1016/j.molstruc.2018.03.063
-
Dash, A., Ragavendran, C. & Rajendran, R. (2025). Biogenic Nickel Oxide Nanoparticles: Synthesis, Characterization and Biomedical Potential. Molecular Biotechnology, https://doi.org/10.1007/s12033-025-01413-9
-
Davar, F., Fereshteh, Z. & Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. Journal of Alloys and Compounds, 476(1-2), 797-801. https://doi.org/10.1016/j.jallcom.2008.09.121
-
El-Saied, F. A., Shakdofa, M. M. E. Ali, M. S., Faried, R. M. W., El-Asmy, A. & Madkour, M. (2021). Novel thiosemicarbazone complexes as single coordinated precursors for noble metal modified nickel oxide nanophotocatalysts. Journal of Physics and Chemistry of Solids, 157, Article 110218. https://doi.org/10.1016/j.jpcs.2021.110218
-
El-Samanody, El-S. A., El-Sawaf, A. K. & Madkour, M. (2019). Synthesis, crystal structure, spectral and thermal investigations of morpholinyldithiocarbamate complexes: A novel coordinated precursors for efficient metal oxide nanophotocatalysts. Inorganica Chimica Acta, 487, 307-315. https://doi.org/10.1016/j.ica.2018.12.027
-
Fereshteh, Z., Salavati-Niasari, M., Saberyan, K., Hosseinpour-Mashkani, S. & Tavakoli, F. (2012). Synthesis of Nickel Oxide Nanoparticles from Thermal Decomposition of a New Precursor. Journal of Cluster Science, 23, 577-583. https://doi.org/10.1007/s10876-012-0477-8
-
Firisa, S. G., Muleta, G. G. & Yimer, A. A. (2022). Synthesis of Nickel Oxide Nanoparticles and Copper-Doped Nickel Oxide Nanocomposites Using Phytolacca dodecandra L’Herit Leaf Extract and Evaluation of Its Antioxidant and Photocatalytic Activities. ACS Omega, 7(49), 44720–44732. https://doi.org/10.1021/acsomega.2c04042
-
García, A. B., Cuesta, A., Montes-Morán, M. A., Martínez-Alonso, A. & Tascón, J. M. D., 1997. Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers. Journal of Colloid and Interface Science, 192, 363-367. https://doi.org/10.1006/jcis.1997.5007
-
Gowda, S. A. M., Goveas, L. C. & Dakshayini, K. (2022). Adsorption of methylene blue by silver nanoparticles synthesized from Urena lobata leaf extract: kinetics and equilibrium analysis. Materials Chemistry and Physics, 288, Article 126431. https://doi.org/10.1016/j.matchemphys.2022.126431
-
Hollingsworth, N., Roffey, A., Islam, H. -U., Mercy, M., Roldan, A., Bras, W., Wolthers, M., Catlow, C. R. A., Sankar, G., Hogarth, G. & de Leeuw, N. H. (2014). Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles, Chemistry of Materials, 26(21), 6281-6292. https://doi.org/10.1021/cm503174z
-
Hosny, N. M., Rady, S. & El Dossoki, F. I. (2021). Adsorption of methylene blue onto synthesized Co3O4, NiO, CuO and ZnO nanoparticles. Journal of the Iranian Chemical Society, 19, 1877-1887. https://doi.org/10.1007/s13738-021-02424-4
-
Jaji, N. -D., Lee, H. L., Hussin, M. H., Md Akil, H., Zakaria, M. R. & Othman, M. B. H. (2020). Advanced nickel nanoparticles technology: From synthesis to applications. Nanotechnology Reviews. 9(1), 1456-1480. https://doi.org/10.1515/ntrev-2020-0109
-
Khalaji, A. D. (2013). Preparation and Characterization of NiO Nanoparticles via Solid-State Thermal Decomposition of Ni(II) Complex. Journal of Cluster Science, 24, 189-195. https://doi.org/10.1007/s10876-012-0542-3
-
Khalaji, A. D., Jafari K. & Rad S. M. (2015). Synthesis of NiO Nanoparticles via a Solid State Thermal Decomposition of Nickel(II) Schiff Base Complex Ni(caph)(N3)(NO3) as a New Precursor. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(6), 875-878. https://doi.org/10.1080/15533174.2013.862638
-
Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T. & Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14(2), Article 242. https://doi.org/10.3390/w14020242
-
Lakshmanan, P., Arulmozhi, R., Thirumaran, S. & Ciattini, S. (2022). Ni(II) dithiocarbamate: Synthesis, crystal structures, DFT studies and applications as precursors for nickel sulfide and nickel oxide nanoparticles. Polyhedron, 218, Article 115766. https://doi.org/10.1016/j.poly.2022.115766
-
Lakshmanan, P., Thirumaran, S. & Ciattini, S. (2020). Synthesis, spectral and structural studies on NiS2PN and NiS2P2 chromophores and use of Ni(II) dithiocarbamate to synthesize nickel sulfide and nickel oxide for photodegradation of dyes. Journal of Molecular Structure, 1220, Article 128704. https://doi.org/10.1016/j.molstruc.2020.128704
-
Madkour, M., Abdel-Monem, Y. K. & Al Sagheer, F. (2016) Controlled Synthesis of NiO and Co3O4 Nanoparticles from Different Coordinated Precursors: Impact of Precursor’s Geometry on the Nanoparticles Characteristics. Industrial & Engineering Chemistry Research, 55(50), 12733-12741. https://doi.org/10.1021/acs.iecr.6b03231
-
Manav, N., Mishra, A. K. & Kaushik, N. K. (2006). In vitro antitumour and antibacterial studies of some Pt(IV) dithiocarbamate complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65(1), 32-35. https://doi.org/10.1016/j.saa.2005.09.023
-
Nassar, M. Y., Aly, H. M., Abdelrahman, E. A. & Moustafa, M. E. (2017). Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye. Journal of Molecular Structure, 1143, 462-471. https://doi.org/10.1016/j.molstruc.2017.04.118
-
Nqombolo, A. & Ajibade, P. A. (2016). Synthesis and Spectral Studies of Ni(II) Dithiocarbamate Complexes and Their Use as Precursors for Nickel Sulphides Nanocrystals. Journal of Chemistry, 2016(1), Article 1293790. https://doi.org/10.1155/2016/1293790
-
Onwudiwe, D. C. & Ajibade, P. A. (2011). ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors. International Journal of Molecular Sciences, 12(9), 5538-5551. https://doi.org/10.3390/ijms12095538
-
Onwudiwe, D. C., Seheri, N. H., Hlungwani, L., Ferjani, H. & Rikhotso-Mbungela, R. (2024). NiO nanoparticles by thermal decomposition of complex and evaluation of the structural, morphological, and optical properties. Journal of Molecular Structure, 1317, Article 139084. https://doi.org/10.1016/j.molstruc.2024.139084
-
Patil, M., Patel, K., Abhale, Y., Rana, G., Alam, M. W., Kumar, A., Jabir, M., Adole, V., Rahdar, A. & Ghotekar, S. (2025). Unraveling the Mechanistic Approaches in the Bio-inspired Synthesis of NiO Nanoparticles and Their Diverse Applications-A Review. BioNanoScience, 15, Article 479. https://doi.org/10.1007/s12668-025-02076-1
-
Prakasam, B. A., Lahtinen M., Peuronen, A., Muruganandham, M., Kolehmainen, E., Haapaniemi, E. & Sillanpaa, M. (2015). Spectral and structural studies on Ni(II) dithiocarbamates: Nickel sulfide nanoparticles from a dithiocarbamate precursor. Inorganica Chimica Acta, 425, 239-246. https://doi.org/10.1016/j.ica.2014.09.016
-
Refat, M. S., Saad, H. A., Gobouri, A. A., Alsawat, M., Adam, A. M. A. & El-Megharbel, S. M. (2022). Charge transfer complexation between some transition metal ions with azo Schiff base donor as a smart precursor for synthesis of nano oxides: An adsorption efficiency for treatment of Congo red dye in wastewater. Journal of Molecular Liquids, 345, Article 117140. https://doi.org/10.1016/j.molliq.2021.117140
-
Revathy, M. S., Suman, R. Jayram, N. D., Geetha, D. & Chitravel, T. (2020). Multifarious properties of Bunsenite nanosphere NiO using coprecipitation method. Materials Today: Proceedings, 33(1), 1165-1174. https://doi.org/10.1016/j.matpr.2020.07.411
-
Roffey, A., Hollingsworth, N., Islam, H. -U., Mercy, M., Sankar, G., Catlow, C. R. A., Hogarth, G. & de Leeuw, N. H. (2016). Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors. Nanoscale, 8, 11067-11075. https://doi.org/10.1039/C6NR00053C
-
Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M. & Darroudi, M. (2020). Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess and Biosystems Engineering, 43, 1209-1218. https://doi.org/10.1007/s00449-020-02315-7
-
Salavati-Niasari, M., Mir, N. & Davar, F. (2010a). A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach. Journal of Alloys and Compounds, 493(1-2), 163-168. https://doi.org/10.1016/j.jallcom.2009.11.153
-
Salavati-Niasari, M., Davar, F. & Fereshteh, Z. (2010b). Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. Journal of Alloys and Compounds, 494(1-2), 410-414. https://doi.org/10.1016/j.jallcom.2010.01.063
-
Sathiyaraj, E., Gurumoorthya, G. & Thirumaran, S. (2015). Nickel(II) dithiocarbamate complexes containing the pyrrole moiety for sensing anions and synthesis of nickel sulfide and nickel oxide nanoparticles. New Journal of Chemistry, 39, 5336-5349. https://doi.org/10.1039/C4NJ02250E
-
Sathiyaraj, E., Thirumaran, S., Ciattini, S. & Selvanayagam, S. (2019). Synthesis and characterization of Ni(II) complexes with functionalized dithiocarbamates: New single source precursors for nickel sulfide and nickel-iron sulfide nanoparticles. Inorganica Chimica Acta, 498, 119162. https://doi.org/10.1016/j.ica.2019.119162
-
Sathiyaraj, E. & Thirumaran, S. (2012). Synthesis and spectral studies on Pb(II) dithiocarbamate complexes containing benzyl and furfuryl groups and their use as precursors for PbS nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 575-581. https://doi.org/10.1016/j.saa.2012.06.052
-
Sathiyaraj, E., Padmavathy, K., Kumar, C. U., Krishnan, K. G. & Ramalingan, C. (2017). Synthesis and spectral studies on Cd(II) dithiocarbamate complexes and their use as precursors for CdS nanoparticles. Journal of Molecular Structure, 1147, 103-113. https://doi.org/10.1016/j.molstruc.2017.06.080
-
Singh, A., Gogoi, H. P. & Barman, P. (2023). Synthesis of metal oxide nanoparticles by facile thermal decomposition of new Co(II), Ni(II), and Zn(II) Schiff base complexes- optical properties and photocatalytic degradation of methylene blue dye. Inorganica Chimica Acta, 546, Article 121292. https://doi.org/10.1016/j.ica.2022.121292
-
Srihasam, S., Thyagarajan, K., Korivi, M., Lebaka, V. R. & Mallem, S. P. R. (2020). Phytogenic Generation of NiO Nanoparticles Using Stevia Leaf Extract and Evaluation of Their In-Vitro Antioxidant and Antimicrobial Properties. Biomolecules, 10(1), Article 89. https://doi.org/10.3390/biom10010089
-
Şenocak, A., Akbaş, H. & İşgör, B. (2024). NiO Nanoparticles Via Calcination of Dithiocarbamate Pioneers: Characterization and Photocatalytic Activity. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 13(4), Article 969. https://doi.org/10.17798/bitlisfen.1485060
-
Thirumaran, S., Gurumoorthy, G., Arulmozhi, R. & Ciattini, S. (2020). Synthesis of nickel sulfide and nickel–iron sulfide nanoparticles from nickel dithiocarbamate complexes and their photocatalytic activities. Applied Organometallic Chemistry, 34(9), Article e5761. https://doi.org/10.1002/aoc.5761