Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 306 - 322, 29.12.2025
https://doi.org/10.32571/ijct.1794125

Abstract

References

  • Aslam, S., Subhan, F., Waqas, M., Zifeng, Y., Yaseen, M., & Naeem, M. (2023). Cu nanoparticles confined within ZSM-5 derived mesoporous silica (MZ) with enhanced stability for catalytic hydrogenation of 4-nitrophenol and degradation of azo dye. Microporous and Mesoporous Materials, 354, 112547. https://doi.org/https://doi.org/10.1016/j.micromeso.2023.112547
  • Baran, T., & Nasrollahzadeh, M. (2020). Facile fabrication of magnetically separable palladium nanoparticles supported on modified kaolin as a highly active heterogeneous catalyst for Suzuki coupling reactions. Journal of Physics and Chemistry of Solids, 146, 109566. https://doi.org/https://doi.org/10.1016/j.jpcs.2020.109566
  • Baruah, B., Gabriel, G. J., Akbashev, M. J., & Booher, M. E. (2013). Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir, 29(13), 4225–4234. https://doi.org/10.1021/la305068p
  • Belay, A., Alemayehu, E., Worku, Z., & Lennartz, B. (2025). Synthesis of Kaolin Filter Cake-Fe3O4 Composite for Reactive Black 5 Dye Removal from Textile Wastewater: Optimization with Box-Behnken Design. In Preprints: Preprints.
  • Bramhaiah, K., & John, N. S. (2013). Hybrid films of reduced graphene oxide with noble metal nanoparticles generated at a liquid/liquid interface for applications in catalysis [10.1039/C3RA23324C]. RSC Advances, 3(21), 7765–7773. https://doi.org/10.1039/C3RA23324C
  • Chen, D., He, Z., Pei, S.-e., Huang, L.-a., Shao, H., Jin, Y., & Wang, J. (2019). Pd nanoparticles supported on N and P dual-doped graphene as an excellent composite catalyst for methanol electro-oxidation. Journal of Alloys and Compounds, 785, 781–788. https://doi.org/https://doi.org/10.1016/j.jallcom.2019.01.246
  • Coccia, F., Tonucci, L., Bosco, D., Bressan, M., & d'Alessandro, N. (2012). One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions [10.1039/C2GC16524D]. Green Chemistry, 14(4), 1073–1078. https://doi.org/10.1039/C2GC16524D
  • Cunha, G. d. C., dos Santos, B. T., Alves, J. R., Alves Silva, I. A., de Souza Cruz, D. R., & Romão, L. P. C. (2018). Applications of magnetic hybrid adsorbent derived from waste biomass for the removal of metal ions and reduction of 4-nitrophenol. Journal of Environmental Management, 213, 236–246. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.02.031
  • Damato, T. C., de Oliveira, C. C. S., Ando, R. A., & Camargo, P. H. C. (2013). A Facile Approach to TiO2 Colloidal Spheres Decorated with Au Nanoparticles Displaying Well-Defined Sizes and Uniform Dispersion. Langmuir, 29(5), 1642–1649. https://doi.org/10.1021/la3045219
  • Daou, I., Lecomte-Nana, G. L., Tessier-Doyen, N., Peyratout, C., Gonon, M. F., & Guinebretiere, R. (2020). Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction. Minerals, 10(5), 480.
  • Dutta, S., Sarkar, S., Ray, C., Roy, A., Sahoo, R., & Pal, T. (2014). Mesoporous Gold and Palladium Nanoleaves from Liquid–Liquid Interface: Enhanced Catalytic Activity of the Palladium Analogue toward Hydrazine-Assisted Room-Temperature 4-Nitrophenol Reduction. ACS Applied Materials & Interfaces, 6(12), 9134–9143. https://doi.org/10.1021/am503251r
  • Ecer, Ü., Şahan, T., & Zengin, A. (2021). Synthesis and characterization of an efficient catalyst based on MoS2 decorated magnetic pumice: An experimental design study for methyl orange degradation. Journal of Environmental Chemical Engineering, 9(3), 105265. https://doi.org/https://doi.org/10.1016/j.jece.2021.105265
  • Gao, C., Xiao, L., Zhou, J., Wang, H., Zhai, S., & An, Q. (2021). Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation. Chemical Engineering Journal, 403, 126370. https://doi.org/https://doi.org/10.1016/j.cej.2020.126370
  • Ghanbari, N., Hoseini, S. J., & Bahrami, M. (2017). Ultrasonic assisted synthesis of palladium-nickel/iron oxide core–shell nanoalloys as effective catalyst for Suzuki-Miyaura and p-nitrophenol reduction reactions. Ultrasonics Sonochemistry, 39, 467–477. https://doi.org/https://doi.org/10.1016/j.ultsonch.2017.05.015
  • Ghorbani-Vaghei, R., Veisi, H., Aliani, M. H., Mohammadi, P., & Karmakar, B. (2021). Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. Journal of Molecular Liquids, 327, 114868. https://doi.org/https://doi.org/10.1016/j.molliq.2020.114868
  • Han, J. N., He, X., Fan, Z. Q., & Zhang, Z. H. (2019). Metal doped armchair graphene nanoribbons: electronic structure, carrier mobility and device properties [10.1039/C8CP06471G]. Physical Chemistry Chemical Physics, 21(4), 1830–1840. https://doi.org/10.1039/C8CP06471G
  • Huang, T., Fu, Y., Peng, Q., Yu, C., Zhu, J., Yu, A., & Wang, X. (2019). Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride. Applied Surface Science, 480, 888–895. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.03.035
  • Ibrahim, I., Ali, I. O., Salama, T. M., Bahgat, A. A., & Mohamed, M. M. (2016). Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Applied Catalysis B: Environmental, 181, 389–402. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.08.005
  • Jadbabaei, N., Slobodjian, R. J., Shuai, D., & Zhang, H. (2017). Catalytic reduction of 4-nitrophenol by palladium-resin composites. Applied Catalysis A: General, 543, 209–217. https://doi.org/https://doi.org/10.1016/j.apcata.2017.06.023
  • Kainz, Q. M., Linhardt, R., Grass, R. N., Vilé, G., Pérez-Ramírez, J., Stark, W. J., & Reiser, O. (2014). Palladium Nanoparticles Supported on Magnetic Carbon-Coated Cobalt Nanobeads: Highly Active and Recyclable Catalysts for Alkene Hydrogenation. Advanced Functional Materials, 24(14), 2020–2027. https://doi.org/https://doi.org/10.1002/adfm.201303277
  • Karakoyun, N., Zengin, A., & Karagöz, M. H. (2025). Magnetically Separable Pd(0)-Polymer Brush on rGO for Efficient Nitrophenols Reduction. ChemistrySelect, 10(15), e202501104. https://doi.org/https://doi.org/10.1002/slct.202501104
  • Karimi, M., Sadjadi, S., Arabi, H., Bahri-Laleh, N., & Poater, A. (2025). Pd nanoparticles supported on modified magnetic kaolin as a novel hydrogenation catalyst. Surfaces and Interfaces, 60, 106037. https://doi.org/https://doi.org/10.1016/j.surfin.2025.106037
  • Kumar, A., & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. https://doi.org/https://doi.org/10.1016/j.matpr.2019.10.037
  • Kumari, M., Pittman, C. U., & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science, 442, 120–132. https://doi.org/https://doi.org/10.1016/j.jcis.2014.09.012
  • Li, M., & Chen, G. (2013). Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres [10.1039/C3NR03521B]. Nanoscale, 5(23), 11919–11927. https://doi.org/10.1039/C3NR03521B
  • Liu, H., Chang, L., Liu, W., Xiong, Z., Zhao, Y., & Zhang, J. (2020). Advances in mercury removal from coal-fired flue gas by mineral adsorbents. Chemical Engineering Journal, 379, 122263. https://doi.org/https://doi.org/10.1016/j.cej.2019.122263
  • Liu, Y., Fan, Y., Yuan, Y., Chen, Y., Cheng, F., & Jiang, S.-C. (2012). Amphiphilic hyperbranched copolymers bearing a hyperbranched core and a dendritic shell as novel stabilizers rendering gold nanoparticles with an unprecedentedly long lifetime in the catalytic reduction of 4-nitrophenol [10.1039/C2JM34445A]. Journal of Materials Chemistry, 22(39), 21173–21182. https://doi.org/10.1039/C2JM34445A
  • Magdy, A., Fouad, Y. O., Abdel-Aziz, M. H., & Konsowa, A. H. (2017). Synthesis and characterization of Fe3O4/kaolin magnetic nanocomposite and its application in wastewater treatment. Journal of Industrial and Engineering Chemistry, 56, 299–311. https://doi.org/https://doi.org/10.1016/j.jiec.2017.07.023
  • Maged, A., Ismael, I. S., Kharbish, S., Sarkar, B., Peräniemi, S., & Bhatnagar, A. (2020). Enhanced interlayer trapping of Pb(II) ions within kaolinite layers: intercalation, characterization, and sorption studies. Environ Sci Pollut Res Int, 27(2), 1870–1887. https://doi.org/10.1007/s11356-019-06845-w
  • Mahanitipong, U., Tummachote, J., Thoopbucha, W., Inthanusorn, W., & Rutnakornpituk, M. (2023). Anionic polymer-coated magnetic nanocomposites for immobilization with palladium nanoparticles as catalysts for the reduction of 4-nitrophenol. Discover Nano, 18(1), 138. https://doi.org/10.1186/s11671-023-03918-1
  • Mahmud, N., & Benamor, A. (2023). Magnetic Iron Oxide Kaolinite Nanocomposite for Effective Removal of Congo Red Dye: Adsorption, Kinetics, and Thermodynamics Studies. Water Conservation Science and Engineering, 8(1), 35. https://doi.org/10.1007/s41101-023-00207-x
  • Mirjalili, B. B. F., Soltani, R., & Bamoniri, A. (2021). Nano-kaolin/Ti(IV)/Fe3O4: a natural based magnetic nano-catalyst for the synthesis of coumarins. Journal of Nanostructures, 11(2), 243–251. https://doi.org/10.22052/jns.2021.02.005
  • Mogudi, B. M., Ncube, P., Bingwa, N., Mawila, N., Mathebula, S., & Meijboom, R. (2017). Promotion effects of alkali- and alkaline earth metals on catalytic activity of mesoporous Co3O4 for 4-nitrophenol reduction. Applied Catalysis B: Environmental, 218, 240–248. https://doi.org/https://doi.org/10.1016/j.apcatb.2017.06.045
  • Mu, B., Tang, J., Zhang, L., & Wang, A. (2016). Preparation, characterization and application on dye adsorption of a well-defined two-dimensional superparamagnetic clay/polyaniline/Fe3O4 nanocomposite. Applied Clay Science, 132-133. https://doi.org/10.1016/j.clay.2016.06.005
  • Nifant’ev, I. E., Vinogradov, A. A., Vinogradov, A. A., Bagrov, V. V., Kiselev, A. V., Minyaev, M. E., Samurganova, T. I., & Ivchenko, P. V. (2023). Heterocene Catalysts and Reaction Temperature Gradient in Dec-1-ene Oligomerization for the Production of Low Viscosity PAO Base Stocks. Industrial & Engineering Chemistry Research, 62(15), 6347–6353. https://doi.org/10.1021/acs.iecr.3c00755
  • Pandey, S., & Mishra, S. B. (2014). Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydrate Polymers, 113, 525–531. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.07.047
  • Sadjadi, S., Malmir, M., & Heravi, M. M. (2019). A novel magnetic heterogeneous catalyst based on decoration of halloysite with ionic liquid-containing dendrimer. Applied Clay Science, 168, 184–195. https://doi.org/https://doi.org/10.1016/j.clay.2018.11.012
  • Sahu, P., & Prasad, B. L. V. (2013). Fine control of nanoparticle sizes and size distributions: temperature and ligand effects on the digestive ripening process [10.1039/C2NR32855K]. Nanoscale, 5(5), 1768–1771. https://doi.org/10.1039/C2NR32855K
  • Santoshi kumari, A., Venkatesham, M., Ayodhya, D., & Veerabhadram, G. (2015). Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Applied Nanoscience, 5(3), 315–320. https://doi.org/10.1007/s13204-014-0320-7
  • Shah, S. A., Ahmad, Z., Khan, S. A., Al-Ghamdi, Y. O., Bakhsh, E. M., Khan, N., ur Rehman, M., Jabli, M., & Khan, S. B. (2021). Biomass impregnated zero-valent Ag and Cu supported-catalyst: Evaluation in the reduction of nitrophenol and discoloration of dyes in aqueous medium. Journal of Organometallic Chemistry, 938, 121756. https://doi.org/https://doi.org/10.1016/j.jorganchem.2021.121756
  • Shahriari, M., Ali Hosseini Sedigh, M., Shahriari, M., Stenzel, M., Mahdi Zangeneh, M., Zangeneh, A., Mahdavi, B., Asadnia, M., Gholami, J., Karmakar, B., & Veisi, H. (2022). Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It’s catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. Inorganic Chemistry Communications, 141, 109523. https://doi.org/https://doi.org/10.1016/j.inoche.2022.109523
  • Shen, W., Qu, Y., Pei, X., Li, S., You, S., Wang, J., Zhang, Z., & Zhou, J. (2017). Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. Journal of Hazardous Materials, 321, 299–306. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.07.051
  • Sözen Aktaş, P. (2025). Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption. International Journal of Chemistry and Technology, 9(2), 199–208. https://doi.org/10.32571/ijct.1656838
  • Sun, X., Xu, T., Xian, T., Yi, Z., Liu, G., Dai, J., & Yang, H. (2023). Insight on the enhanced piezo-photocatalytic mechanism of In2O3/BiFeO3 heterojunctions for degradation of tetracycline hydrochloride. Applied Surface Science, 640, 158408. https://doi.org/https://doi.org/10.1016/j.apsusc.2023.158408
  • Sun, X., Zhang, J., Ma, J., Xian, T., Liu, G., & Yang, H. (2024). Synthesis of strongly interactive FeWO4/BiOCl heterostructures for efficient photoreduction of CO2 and piezo-photodegradation of bisphenol A. Chemical Engineering Journal, 496, 153961. https://doi.org/https://doi.org/10.1016/j.cej.2024.153961
  • Van Vaerenbergh, B., Lauwaert, J., Thybaut, J. W., Vermeir, P., & De Clercq, J. (2019). Pd nanoparticle and molecular Pd2+ leaching pathways for a strongly acid versus strongly basic resin supported Pd nanoparticle catalyst in Suzuki coupling. Chemical Engineering Journal, 374, 576–588. https://doi.org/https://doi.org/10.1016/j.cej.2019.05.197
  • Vandarkuzhali, S. A. A., Karthikeyan, S., Viswanathan, B., & Pachamuthu, M. P. (2018). Arachis hypogaea derived activated carbon/Pt catalyst: Reduction of organic dyes. Surfaces and Interfaces, 13, 101–111. https://doi.org/https://doi.org/10.1016/j.surfin.2018.07.005
  • Verberne-Sutton, S. D. (2014). Application of Scanning Probe Microscopy to Characterize Physical Properties of Polymer Brushes, Photoactive Polymers and Rare Earth Oxide Nanostructures Louisiana State University]. Baton Rouge, LA.
  • Vilian, A. T. E., Choe, S. R., Giribabu, K., Jang, S.-C., Roh, C., Huh, Y. S., & Han, Y.-K. (2017). Pd nanospheres decorated reduced graphene oxide with multi-functions: Highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant. Journal of Hazardous Materials, 333, 54–62. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.015
  • Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2), 354–364. https://doi.org/https://doi.org/10.1016/j.cej.2008.09.009
  • Vinoth Kumar, P., Mohana Roopan, S., & Madhumitha, G. (2024). Recent advances on palladium incorporated clay-based heterogeneous catalyst for carbon–carbon coupling reactions. Monatshefte für Chemie - Chemical Monthly, 155(1), 1–15. https://doi.org/10.1007/s00706-023-03148-2
  • Yanping, D., Tian, X., Zhao, H., & Luo, J. (2024). Anchoring of Pd nanoparticles over amines grafted 3D TiO2 catalyst for the improved selective hydrogenation of 4-nitrophenol. Solid State Sciences, 149, 107474. https://doi.org/https://doi.org/10.1016/j.solidstatesciences.2024.107474
  • Yao, T., Zuo, Q., Wang, H., Wu, J., Xin, B., Cui, F., & Cui, T. (2015). A simple way to prepare Pd/Fe3O4/polypyrrole hollow capsules and their applications in catalysis. Journal of Colloid and Interface Science, 450, 366–373. https://doi.org/https://doi.org/10.1016/j.jcis.2015.03.012
  • Yavuz, C., & Karakoyun, N. (2026). Construction of magnetically recoverable palladium deposited polymer brush catalyst for reduction of organic pollutants. Materials Research Bulletin, 194, 113722. https://doi.org/https://doi.org/10.1016/j.materresbull.2025.113722
  • Zhang, J.-W., Li, D.-D., Lu, G.-P., Deng, T., & Cai, C. (2018). Pd-Ni BMNPs Encapsulated in UiO-66 as an Efficient Catalyst for the Activation of “Inert” C−O Bonds. ChemCatChem, 10(19), 4258–4263. https://doi.org/https://doi.org/10.1002/cctc.201800898
  • Zhang, X., Wang, N., Geng, L., Fu, J., Hu, H., Zhang, D., Zhu, B., Carozza, J., & Han, H. (2018). Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitrophenol. Journal of Colloid and Interface Science, 512, 844–852. https://doi.org/https://doi.org/10.1016/j.jcis.2017.11.005
  • Zhu, J., Wei, S., Chen, M., Gu, H., Rapole, S. B., Pallavkar, S., Ho, T. C., Hopper, J., & Guo, Z. (2013). Magnetic nanocomposites for environmental remediation. Advanced Powder Technology, 24(2), 459–467. https://doi.org/https://doi.org/10.1016/j.apt.2012.10.012

Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-composite for Reduction of 4-Nitrophenol

Year 2025, Volume: 9 Issue: 2, 306 - 322, 29.12.2025
https://doi.org/10.32571/ijct.1794125

Abstract

In this work, we developed a Pd–Fe₃O₄@KLN nanocomposite through a straightforward and efficient synthesis route that employs kaolin (KLN) as the structural template, Fe₃O₄ as the magnetic component, and palladium nanoparticles as the active sites. Structural analyses (XRD, SEM, and XPS) confirmed that the kaolin framework remained intact while enabling the successful formation of Fe₃O₄ and a uniform distribution of Pd⁰/PdO species across the support. The resulting material acted as an excellent catalyst towards the catalytic reduction of 4-nitrophenol, achieving complete conversion within 45 seconds under suitable reaction conditions. The decay process obeyed pseudo-first order kinetics, which was fixed by its high apparent rates (5.52–6.27 min⁻¹). Temperature-dependent kinetic studies gave an activation energy of 70.24 kJ mol⁻¹, and Eyring analysis yielded ΔH# = 67.68 kJ mol⁻¹ and ΔS# = –0.01732 kJ mol⁻¹ K⁻¹. Magnetic measurements revealed superparamagnetic behavior, facilitating easy separation with an external magnet. Reusability tests showed that the catalyst preserved more than 80 % of its activity after five consecutive runs, with minimal Pd leaching (< 0.16 %). These results highlight Pd–Fe₃O₄@KLN as an environmentally friendly, magnetically recoverable, and reusable catalyst facilitating efficient reduction of nitroaromatic pollutants.

References

  • Aslam, S., Subhan, F., Waqas, M., Zifeng, Y., Yaseen, M., & Naeem, M. (2023). Cu nanoparticles confined within ZSM-5 derived mesoporous silica (MZ) with enhanced stability for catalytic hydrogenation of 4-nitrophenol and degradation of azo dye. Microporous and Mesoporous Materials, 354, 112547. https://doi.org/https://doi.org/10.1016/j.micromeso.2023.112547
  • Baran, T., & Nasrollahzadeh, M. (2020). Facile fabrication of magnetically separable palladium nanoparticles supported on modified kaolin as a highly active heterogeneous catalyst for Suzuki coupling reactions. Journal of Physics and Chemistry of Solids, 146, 109566. https://doi.org/https://doi.org/10.1016/j.jpcs.2020.109566
  • Baruah, B., Gabriel, G. J., Akbashev, M. J., & Booher, M. E. (2013). Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir, 29(13), 4225–4234. https://doi.org/10.1021/la305068p
  • Belay, A., Alemayehu, E., Worku, Z., & Lennartz, B. (2025). Synthesis of Kaolin Filter Cake-Fe3O4 Composite for Reactive Black 5 Dye Removal from Textile Wastewater: Optimization with Box-Behnken Design. In Preprints: Preprints.
  • Bramhaiah, K., & John, N. S. (2013). Hybrid films of reduced graphene oxide with noble metal nanoparticles generated at a liquid/liquid interface for applications in catalysis [10.1039/C3RA23324C]. RSC Advances, 3(21), 7765–7773. https://doi.org/10.1039/C3RA23324C
  • Chen, D., He, Z., Pei, S.-e., Huang, L.-a., Shao, H., Jin, Y., & Wang, J. (2019). Pd nanoparticles supported on N and P dual-doped graphene as an excellent composite catalyst for methanol electro-oxidation. Journal of Alloys and Compounds, 785, 781–788. https://doi.org/https://doi.org/10.1016/j.jallcom.2019.01.246
  • Coccia, F., Tonucci, L., Bosco, D., Bressan, M., & d'Alessandro, N. (2012). One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions [10.1039/C2GC16524D]. Green Chemistry, 14(4), 1073–1078. https://doi.org/10.1039/C2GC16524D
  • Cunha, G. d. C., dos Santos, B. T., Alves, J. R., Alves Silva, I. A., de Souza Cruz, D. R., & Romão, L. P. C. (2018). Applications of magnetic hybrid adsorbent derived from waste biomass for the removal of metal ions and reduction of 4-nitrophenol. Journal of Environmental Management, 213, 236–246. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.02.031
  • Damato, T. C., de Oliveira, C. C. S., Ando, R. A., & Camargo, P. H. C. (2013). A Facile Approach to TiO2 Colloidal Spheres Decorated with Au Nanoparticles Displaying Well-Defined Sizes and Uniform Dispersion. Langmuir, 29(5), 1642–1649. https://doi.org/10.1021/la3045219
  • Daou, I., Lecomte-Nana, G. L., Tessier-Doyen, N., Peyratout, C., Gonon, M. F., & Guinebretiere, R. (2020). Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction. Minerals, 10(5), 480.
  • Dutta, S., Sarkar, S., Ray, C., Roy, A., Sahoo, R., & Pal, T. (2014). Mesoporous Gold and Palladium Nanoleaves from Liquid–Liquid Interface: Enhanced Catalytic Activity of the Palladium Analogue toward Hydrazine-Assisted Room-Temperature 4-Nitrophenol Reduction. ACS Applied Materials & Interfaces, 6(12), 9134–9143. https://doi.org/10.1021/am503251r
  • Ecer, Ü., Şahan, T., & Zengin, A. (2021). Synthesis and characterization of an efficient catalyst based on MoS2 decorated magnetic pumice: An experimental design study for methyl orange degradation. Journal of Environmental Chemical Engineering, 9(3), 105265. https://doi.org/https://doi.org/10.1016/j.jece.2021.105265
  • Gao, C., Xiao, L., Zhou, J., Wang, H., Zhai, S., & An, Q. (2021). Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation. Chemical Engineering Journal, 403, 126370. https://doi.org/https://doi.org/10.1016/j.cej.2020.126370
  • Ghanbari, N., Hoseini, S. J., & Bahrami, M. (2017). Ultrasonic assisted synthesis of palladium-nickel/iron oxide core–shell nanoalloys as effective catalyst for Suzuki-Miyaura and p-nitrophenol reduction reactions. Ultrasonics Sonochemistry, 39, 467–477. https://doi.org/https://doi.org/10.1016/j.ultsonch.2017.05.015
  • Ghorbani-Vaghei, R., Veisi, H., Aliani, M. H., Mohammadi, P., & Karmakar, B. (2021). Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. Journal of Molecular Liquids, 327, 114868. https://doi.org/https://doi.org/10.1016/j.molliq.2020.114868
  • Han, J. N., He, X., Fan, Z. Q., & Zhang, Z. H. (2019). Metal doped armchair graphene nanoribbons: electronic structure, carrier mobility and device properties [10.1039/C8CP06471G]. Physical Chemistry Chemical Physics, 21(4), 1830–1840. https://doi.org/10.1039/C8CP06471G
  • Huang, T., Fu, Y., Peng, Q., Yu, C., Zhu, J., Yu, A., & Wang, X. (2019). Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride. Applied Surface Science, 480, 888–895. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.03.035
  • Ibrahim, I., Ali, I. O., Salama, T. M., Bahgat, A. A., & Mohamed, M. M. (2016). Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Applied Catalysis B: Environmental, 181, 389–402. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.08.005
  • Jadbabaei, N., Slobodjian, R. J., Shuai, D., & Zhang, H. (2017). Catalytic reduction of 4-nitrophenol by palladium-resin composites. Applied Catalysis A: General, 543, 209–217. https://doi.org/https://doi.org/10.1016/j.apcata.2017.06.023
  • Kainz, Q. M., Linhardt, R., Grass, R. N., Vilé, G., Pérez-Ramírez, J., Stark, W. J., & Reiser, O. (2014). Palladium Nanoparticles Supported on Magnetic Carbon-Coated Cobalt Nanobeads: Highly Active and Recyclable Catalysts for Alkene Hydrogenation. Advanced Functional Materials, 24(14), 2020–2027. https://doi.org/https://doi.org/10.1002/adfm.201303277
  • Karakoyun, N., Zengin, A., & Karagöz, M. H. (2025). Magnetically Separable Pd(0)-Polymer Brush on rGO for Efficient Nitrophenols Reduction. ChemistrySelect, 10(15), e202501104. https://doi.org/https://doi.org/10.1002/slct.202501104
  • Karimi, M., Sadjadi, S., Arabi, H., Bahri-Laleh, N., & Poater, A. (2025). Pd nanoparticles supported on modified magnetic kaolin as a novel hydrogenation catalyst. Surfaces and Interfaces, 60, 106037. https://doi.org/https://doi.org/10.1016/j.surfin.2025.106037
  • Kumar, A., & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. https://doi.org/https://doi.org/10.1016/j.matpr.2019.10.037
  • Kumari, M., Pittman, C. U., & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science, 442, 120–132. https://doi.org/https://doi.org/10.1016/j.jcis.2014.09.012
  • Li, M., & Chen, G. (2013). Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres [10.1039/C3NR03521B]. Nanoscale, 5(23), 11919–11927. https://doi.org/10.1039/C3NR03521B
  • Liu, H., Chang, L., Liu, W., Xiong, Z., Zhao, Y., & Zhang, J. (2020). Advances in mercury removal from coal-fired flue gas by mineral adsorbents. Chemical Engineering Journal, 379, 122263. https://doi.org/https://doi.org/10.1016/j.cej.2019.122263
  • Liu, Y., Fan, Y., Yuan, Y., Chen, Y., Cheng, F., & Jiang, S.-C. (2012). Amphiphilic hyperbranched copolymers bearing a hyperbranched core and a dendritic shell as novel stabilizers rendering gold nanoparticles with an unprecedentedly long lifetime in the catalytic reduction of 4-nitrophenol [10.1039/C2JM34445A]. Journal of Materials Chemistry, 22(39), 21173–21182. https://doi.org/10.1039/C2JM34445A
  • Magdy, A., Fouad, Y. O., Abdel-Aziz, M. H., & Konsowa, A. H. (2017). Synthesis and characterization of Fe3O4/kaolin magnetic nanocomposite and its application in wastewater treatment. Journal of Industrial and Engineering Chemistry, 56, 299–311. https://doi.org/https://doi.org/10.1016/j.jiec.2017.07.023
  • Maged, A., Ismael, I. S., Kharbish, S., Sarkar, B., Peräniemi, S., & Bhatnagar, A. (2020). Enhanced interlayer trapping of Pb(II) ions within kaolinite layers: intercalation, characterization, and sorption studies. Environ Sci Pollut Res Int, 27(2), 1870–1887. https://doi.org/10.1007/s11356-019-06845-w
  • Mahanitipong, U., Tummachote, J., Thoopbucha, W., Inthanusorn, W., & Rutnakornpituk, M. (2023). Anionic polymer-coated magnetic nanocomposites for immobilization with palladium nanoparticles as catalysts for the reduction of 4-nitrophenol. Discover Nano, 18(1), 138. https://doi.org/10.1186/s11671-023-03918-1
  • Mahmud, N., & Benamor, A. (2023). Magnetic Iron Oxide Kaolinite Nanocomposite for Effective Removal of Congo Red Dye: Adsorption, Kinetics, and Thermodynamics Studies. Water Conservation Science and Engineering, 8(1), 35. https://doi.org/10.1007/s41101-023-00207-x
  • Mirjalili, B. B. F., Soltani, R., & Bamoniri, A. (2021). Nano-kaolin/Ti(IV)/Fe3O4: a natural based magnetic nano-catalyst for the synthesis of coumarins. Journal of Nanostructures, 11(2), 243–251. https://doi.org/10.22052/jns.2021.02.005
  • Mogudi, B. M., Ncube, P., Bingwa, N., Mawila, N., Mathebula, S., & Meijboom, R. (2017). Promotion effects of alkali- and alkaline earth metals on catalytic activity of mesoporous Co3O4 for 4-nitrophenol reduction. Applied Catalysis B: Environmental, 218, 240–248. https://doi.org/https://doi.org/10.1016/j.apcatb.2017.06.045
  • Mu, B., Tang, J., Zhang, L., & Wang, A. (2016). Preparation, characterization and application on dye adsorption of a well-defined two-dimensional superparamagnetic clay/polyaniline/Fe3O4 nanocomposite. Applied Clay Science, 132-133. https://doi.org/10.1016/j.clay.2016.06.005
  • Nifant’ev, I. E., Vinogradov, A. A., Vinogradov, A. A., Bagrov, V. V., Kiselev, A. V., Minyaev, M. E., Samurganova, T. I., & Ivchenko, P. V. (2023). Heterocene Catalysts and Reaction Temperature Gradient in Dec-1-ene Oligomerization for the Production of Low Viscosity PAO Base Stocks. Industrial & Engineering Chemistry Research, 62(15), 6347–6353. https://doi.org/10.1021/acs.iecr.3c00755
  • Pandey, S., & Mishra, S. B. (2014). Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydrate Polymers, 113, 525–531. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.07.047
  • Sadjadi, S., Malmir, M., & Heravi, M. M. (2019). A novel magnetic heterogeneous catalyst based on decoration of halloysite with ionic liquid-containing dendrimer. Applied Clay Science, 168, 184–195. https://doi.org/https://doi.org/10.1016/j.clay.2018.11.012
  • Sahu, P., & Prasad, B. L. V. (2013). Fine control of nanoparticle sizes and size distributions: temperature and ligand effects on the digestive ripening process [10.1039/C2NR32855K]. Nanoscale, 5(5), 1768–1771. https://doi.org/10.1039/C2NR32855K
  • Santoshi kumari, A., Venkatesham, M., Ayodhya, D., & Veerabhadram, G. (2015). Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Applied Nanoscience, 5(3), 315–320. https://doi.org/10.1007/s13204-014-0320-7
  • Shah, S. A., Ahmad, Z., Khan, S. A., Al-Ghamdi, Y. O., Bakhsh, E. M., Khan, N., ur Rehman, M., Jabli, M., & Khan, S. B. (2021). Biomass impregnated zero-valent Ag and Cu supported-catalyst: Evaluation in the reduction of nitrophenol and discoloration of dyes in aqueous medium. Journal of Organometallic Chemistry, 938, 121756. https://doi.org/https://doi.org/10.1016/j.jorganchem.2021.121756
  • Shahriari, M., Ali Hosseini Sedigh, M., Shahriari, M., Stenzel, M., Mahdi Zangeneh, M., Zangeneh, A., Mahdavi, B., Asadnia, M., Gholami, J., Karmakar, B., & Veisi, H. (2022). Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It’s catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. Inorganic Chemistry Communications, 141, 109523. https://doi.org/https://doi.org/10.1016/j.inoche.2022.109523
  • Shen, W., Qu, Y., Pei, X., Li, S., You, S., Wang, J., Zhang, Z., & Zhou, J. (2017). Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. Journal of Hazardous Materials, 321, 299–306. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.07.051
  • Sözen Aktaş, P. (2025). Novel Cadmium-Based Metal-Organic Frameworks: Preparation and Application for Dye Adsorption. International Journal of Chemistry and Technology, 9(2), 199–208. https://doi.org/10.32571/ijct.1656838
  • Sun, X., Xu, T., Xian, T., Yi, Z., Liu, G., Dai, J., & Yang, H. (2023). Insight on the enhanced piezo-photocatalytic mechanism of In2O3/BiFeO3 heterojunctions for degradation of tetracycline hydrochloride. Applied Surface Science, 640, 158408. https://doi.org/https://doi.org/10.1016/j.apsusc.2023.158408
  • Sun, X., Zhang, J., Ma, J., Xian, T., Liu, G., & Yang, H. (2024). Synthesis of strongly interactive FeWO4/BiOCl heterostructures for efficient photoreduction of CO2 and piezo-photodegradation of bisphenol A. Chemical Engineering Journal, 496, 153961. https://doi.org/https://doi.org/10.1016/j.cej.2024.153961
  • Van Vaerenbergh, B., Lauwaert, J., Thybaut, J. W., Vermeir, P., & De Clercq, J. (2019). Pd nanoparticle and molecular Pd2+ leaching pathways for a strongly acid versus strongly basic resin supported Pd nanoparticle catalyst in Suzuki coupling. Chemical Engineering Journal, 374, 576–588. https://doi.org/https://doi.org/10.1016/j.cej.2019.05.197
  • Vandarkuzhali, S. A. A., Karthikeyan, S., Viswanathan, B., & Pachamuthu, M. P. (2018). Arachis hypogaea derived activated carbon/Pt catalyst: Reduction of organic dyes. Surfaces and Interfaces, 13, 101–111. https://doi.org/https://doi.org/10.1016/j.surfin.2018.07.005
  • Verberne-Sutton, S. D. (2014). Application of Scanning Probe Microscopy to Characterize Physical Properties of Polymer Brushes, Photoactive Polymers and Rare Earth Oxide Nanostructures Louisiana State University]. Baton Rouge, LA.
  • Vilian, A. T. E., Choe, S. R., Giribabu, K., Jang, S.-C., Roh, C., Huh, Y. S., & Han, Y.-K. (2017). Pd nanospheres decorated reduced graphene oxide with multi-functions: Highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant. Journal of Hazardous Materials, 333, 54–62. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.015
  • Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2), 354–364. https://doi.org/https://doi.org/10.1016/j.cej.2008.09.009
  • Vinoth Kumar, P., Mohana Roopan, S., & Madhumitha, G. (2024). Recent advances on palladium incorporated clay-based heterogeneous catalyst for carbon–carbon coupling reactions. Monatshefte für Chemie - Chemical Monthly, 155(1), 1–15. https://doi.org/10.1007/s00706-023-03148-2
  • Yanping, D., Tian, X., Zhao, H., & Luo, J. (2024). Anchoring of Pd nanoparticles over amines grafted 3D TiO2 catalyst for the improved selective hydrogenation of 4-nitrophenol. Solid State Sciences, 149, 107474. https://doi.org/https://doi.org/10.1016/j.solidstatesciences.2024.107474
  • Yao, T., Zuo, Q., Wang, H., Wu, J., Xin, B., Cui, F., & Cui, T. (2015). A simple way to prepare Pd/Fe3O4/polypyrrole hollow capsules and their applications in catalysis. Journal of Colloid and Interface Science, 450, 366–373. https://doi.org/https://doi.org/10.1016/j.jcis.2015.03.012
  • Yavuz, C., & Karakoyun, N. (2026). Construction of magnetically recoverable palladium deposited polymer brush catalyst for reduction of organic pollutants. Materials Research Bulletin, 194, 113722. https://doi.org/https://doi.org/10.1016/j.materresbull.2025.113722
  • Zhang, J.-W., Li, D.-D., Lu, G.-P., Deng, T., & Cai, C. (2018). Pd-Ni BMNPs Encapsulated in UiO-66 as an Efficient Catalyst for the Activation of “Inert” C−O Bonds. ChemCatChem, 10(19), 4258–4263. https://doi.org/https://doi.org/10.1002/cctc.201800898
  • Zhang, X., Wang, N., Geng, L., Fu, J., Hu, H., Zhang, D., Zhu, B., Carozza, J., & Han, H. (2018). Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitrophenol. Journal of Colloid and Interface Science, 512, 844–852. https://doi.org/https://doi.org/10.1016/j.jcis.2017.11.005
  • Zhu, J., Wei, S., Chen, M., Gu, H., Rapole, S. B., Pallavkar, S., Ho, T. C., Hopper, J., & Guo, Z. (2013). Magnetic nanocomposites for environmental remediation. Advanced Powder Technology, 24(2), 459–467. https://doi.org/https://doi.org/10.1016/j.apt.2012.10.012
There are 57 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other), Material Production Technologies
Journal Section Research Article
Authors

Necdet Karakoyun 0000-0002-6083-6921

Submission Date October 1, 2025
Acceptance Date November 20, 2025
Early Pub Date December 9, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Karakoyun, N. (2025). Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-composite for Reduction of 4-Nitrophenol. International Journal of Chemistry and Technology, 9(2), 306-322. https://doi.org/10.32571/ijct.1794125
AMA Karakoyun N. Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-composite for Reduction of 4-Nitrophenol. Int. J. Chem. Technol. December 2025;9(2):306-322. doi:10.32571/ijct.1794125
Chicago Karakoyun, Necdet. “Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-Composite for Reduction of 4-Nitrophenol”. International Journal of Chemistry and Technology 9, no. 2 (December 2025): 306-22. https://doi.org/10.32571/ijct.1794125.
EndNote Karakoyun N (December 1, 2025) Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-composite for Reduction of 4-Nitrophenol. International Journal of Chemistry and Technology 9 2 306–322.
IEEE N. Karakoyun, “Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-composite for Reduction of 4-Nitrophenol”, Int. J. Chem. Technol., vol. 9, no. 2, pp. 306–322, 2025, doi: 10.32571/ijct.1794125.
ISNAD Karakoyun, Necdet. “Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-Composite for Reduction of 4-Nitrophenol”. International Journal of Chemistry and Technology 9/2 (December2025), 306-322. https://doi.org/10.32571/ijct.1794125.
JAMA Karakoyun N. Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-composite for Reduction of 4-Nitrophenol. Int. J. Chem. Technol. 2025;9:306–322.
MLA Karakoyun, Necdet. “Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-Composite for Reduction of 4-Nitrophenol”. International Journal of Chemistry and Technology, vol. 9, no. 2, 2025, pp. 306-22, doi:10.32571/ijct.1794125.
Vancouver Karakoyun N. Preparation, Characterization, and Catalytic Activity of Pd-Fe₃O₄@KLN Nano-composite for Reduction of 4-Nitrophenol. Int. J. Chem. Technol. 2025;9(2):306-22.