Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 378 - 385, 29.12.2025
https://doi.org/10.32571/ijct.1823426

Abstract

References

  • Abdollahipour, A., & Sayyaadi, H. (2022). Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems. Energy, 260, 124944. https://doi.org/10.1016/j.energy.2022.124944.
  • Al-Akraa, I. M., Asal, Y. M., & Mohammad, A. M. (2022). Surface engineering of Pt surfaces with Au and cobalt oxide nanostructures for enhanced formic acid electro-oxidation. Arabian Journal of Chemistry, 15(8), 103965. https://doi.org/10.1016/j.arabjc.2022.103965.
  • Chang, J., Feng, L., Liu, C., Xing, W., & Hu, X. (2014). An effective Pd–Ni2P/C anode catalyst for direct formic acid fuel cells. Angewandte Chemie International Edition, 53(1), 122-126. https://doi.org/10.1002/anie.201308620.
  • Chen, X., Granda-Marulanda, L. P., McCrum, I. T., & Koper, M. T. M. (2022). How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nature Communications, 13(1), 38. https://doi.org/10.1038/s41467-021-27793-5.
  • Çögenli, M. S., & Ayşe, B. Y. (2018). Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation. Materials Research Express, 5(7), 075513. https://doi.org/10.1088/2053-1591/aad0e8.
  • Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954-1971. https://doi.org/10.1016/j.ijhydene.2011.03.173.
  • Dutta, I., Chatterjee, S., Cheng, H., Parsapur, R. K., Liu, Z., Li, Z.,…Huang, K.-W. (2022). Formic Acid to Power towards Low-Carbon Economy. Advanced Energy Materials, 12(15), 2103799. https://doi.org/10.1002/aenm.202103799.
  • Fan, J., Du, H., Zhao, Y., Wang, Q., Liu, Y., Li, D., & Feng, J. (2020). Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catalysis, 10(22), 13560-13583. https://doi.org/10.1021/acscatal.0c03280.
  • Fang, Z., & Chen, W. (2021). Recent advances in formic acid electro-oxidation: From the fundamental mechanism to electrocatalysts. Nanoscale Advances, 3(1), 94-105. https://doi.org/10.1039/D0NA00803F.
  • Gong, M., Li, F., Yao, Z., Zhang, S., Dong, J., Chen, Y., & Tang, Y. (2015). Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation [10.1039/C4NR07375D]. Nanoscale, 7(11), 4894-4899. https://doi.org/10.1039/C4NR07375D.
  • Gunji, T., & Matsumoto, F. (2019). Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials. Inorganics, 7(3). https://doi.org/10.3390/inorganics7030036.
  • Guo, Z., Zhang, X., Sun, H., Dai, X., Yang, Y., Li, X., & Meng, T. (2014). Novel honeycomb nanosphere Au@Pt bimetallic nanostructure as a high performance electrocatalyst for methanol and formic acid oxidation. Electrochimica Acta, 134, 411-417. https://doi.org/10.1016/j.electacta.2014.04.088.
  • Hong, M., & Jo, A. (2025). Improved electrochemical surface area measurement of platinum using a potential holding strategy. Electrochimica Acta, 540, 147249. https://doi.org/10.1016/j.electacta.2025.147249.
  • Jung, W. S., Han, J., & Ha, S. (2007). Analysis of palladium-based anode electrode using electrochemical impedance spectra in direct formic acid fuel cells. Journal of Power Sources, 173(1), 53-59. https://doi.org/10.1016/j.jpowsour.2007.08.023.
  • Kamarudin, M. Z. F., Kamarudin, S. K., Masdar, M. S., & Daud, W. R. W. (2013). Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy, 38(22), 9438-9453. https://doi.org/10.1016/j.ijhydene.2012.07.059.
  • Kamarudin, S. K., Achmad, F., & Daud, W. R. W. (2009). Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy, 34(16), 6902-6916. https://doi.org/10.1016/j.ijhydene.2009.06.013.
  • Kamran, M., & Turzyński, M. (2024). Exploring hydrogen energy systems: A comprehensive review of technologies, applications, prevailing trends, and associated challenges. Journal of Energy Storage, 96, 112601. https://doi.org/10.1016/j.est.2024.112601.
  • Kumar, A., & Buttry, D. A. (2016). Influence of Halide Ions on Anodic Oxidation of Ethanol on Palladium. Electrocatalysis, 7(3), 201-206. https://doi.org/10.1007/s12678-015-0298-2.
  • Lal, A., Porat, H., Dutta, A., Catherin Sesu, D., Yadav, M. K., & Borenstein, A. (2024). Palladium-Embedded Laser-Induced Graphene for Efficient Formic Acid Oxidation. Energy & Fuels, 38(19), 18930-18939. https://doi.org/10.1021/acs.energyfuels.4c03417.
  • Li, D., Meng, F., Wang, H., Jiang, X., & Zhu, Y. (2016). Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochimica Acta, 190, 852-861. https://doi.org/10.1016/j.electacta.2016.01.001.
  • Liao, M., Hu, Q., Zheng, J., Li, Y., Zhou, H., Zhong, C.-J., & Chen, B. H. (2013). Pd decorated Fe/C nanocatalyst for formic acid electrooxidation. Electrochimica Acta, 111, 504-509. https://doi.org/10.1016/j.electacta.2013.08.102.
  • Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., & Wilkinson, D. P. (2006). A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 155(2), 95-110. https://doi.org/10.1016/j.jpowsour.2006.01.030.
  • Lović, J. D., Tripković, A. V., Gojković, S. L., Popović, K. D., Tripković, D. V., Olszewski, P., & Kowal, A. (2005). Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. Journal of Electroanalytical Chemistry, 581(2), 294-302. https://doi.org/10.1016/j.jelechem.2005.05.002.
  • Lu, Y., & Chen, W. (2010). Nanoneedle-Covered Pd−Ag Nanotubes: High Electrocatalytic Activity for Formic Acid Oxidation. The Journal of Physical Chemistry C, 114(49), 21190-21200. https://doi.org/10.1021/jp107768n.
  • Lu, Y., & Chen, W. (2012). PdAg Alloy Nanowires: Facile One-Step Synthesis and High Electrocatalytic Activity for Formic Acid Oxidation. ACS Catalysis, 2(1), 84-90. https://doi.org/10.1021/cs200538g.
  • Matin, M. A., Jang, J.-H., & Kwon, Y.-U. (2014). PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. Journal of Power Sources, 262, 356-363. https://doi.org/10.1016/j.jpowsour.2014.03.109.
  • Mirza, S., Chen, H., Gu, Z.-G., & Zhang, J. (2018). Electrooxidation of Pd–Cu NP loaded porous carbon derived from a Cu-MOF [10.1039/C7RA10331J]. RSC Advances, 8(4), 1803-1807. https://doi.org/10.1039/C7RA10331J.
  • Sofian, M., Nasim, F., Ali, H., & Nadeem, M. A. (2023). Pronounced effect of yttrium oxide on the activity of Pd/rGO electrocatalyst for formic acid oxidation reaction [10.1039/D3RA01929B]. RSC Advances, 13(21), 14306-14316. https://doi.org/10.1039/D3RA01929B.
  • Tellez-Cruz, M. M., Escorihuela, J., Solorza-Feria, O., & Compañ, V. (2021). Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers, 13(18). https://doi.org/10.3390/polym13183064.
  • Ulas, B., Caglar, A., Kivrak, A., Aktas, N., & Kivrak, H. (2020). Tailoring the metallic composition of Pd, Pt, and Au containing novel trimetallic catalysts to achieve enhanced formic acid electrooxidation activity. Ionics, 26(6), 3109-3121. https://doi.org/10.1007/s11581-020-03444-5.
  • Ulas, B., Caglar, A., Sahin, O., & Kivrak, H. (2018). Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. Journal of Colloid and Interface Science, 532, 47-57. https://doi.org/10.1016/j.jcis.2018.07.120.
  • Ulas, B., Yilmaz, Y., Gök, Ö., & Kivrak, H. (2024). Highly active polyethylene glycol grafted cellulose supported Pd nanoparticles for glucose electrooxidation. Process Safety and Environmental Protection, 185, 772-781. https://doi.org/10.1016/j.psep.2024.03.063.
  • Usman, M., Zeb, Z., Ullah, H., Suliman, M. H., Humayun, M., Ullah, L.,…Saeed, M. (2022). A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. Journal of Environmental Chemical Engineering, 10(3), 107548. https://doi.org/10.1016/j.jece.2022.107548.
  • Wang, Y., He, Q., Wei, H., Guo, J., Ding, K.-q., Wang, Q.,…Guo, Z. (2015). Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation. Electrochimica acta, 184, 452-465. https://doi.org/10.1016/j.electacta.2015.10.046.
  • Yao, S., Li, G., Liu, C., & Xing, W. (2015). Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation. Journal of Power Sources, 284, 355-360. https://doi.org/10.1016/j.jpowsour.2015.02.056.
  • Yu, X., & Pickup, P. G. (2008). Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources, 182(1), 124-132. https://doi.org/10.1016/j.jpowsour.2008.03.075.
  • Zhao, Q., Ge, C., Cai, Y., Qiao, Q., & Jia, X. (2018). Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid. Journal of Colloid and Interface Science, 514, 425-432. https://doi.org/10.1016/j.jcis.2017.12.053.
  • Zhu, Y., Ha, S. Y., & Masel, R. I. (2004). High power density direct formic acid fuel cells. Journal of Power Sources, 130(1), 8-14. https://doi.org/10.1016/j.jpowsour.2003.11.051.

Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells

Year 2025, Volume: 9 Issue: 2, 378 - 385, 29.12.2025
https://doi.org/10.32571/ijct.1823426

Abstract

Direct formic acid fuel cells (DFAFCs) are regarded as attractive power sources for portable devices and other small-scale energy applications. Palladium (Pd) is intrinsically highly active toward this reaction; however, monometallic Pd nanoparticles gradually lose their activity with time. This drawback can be mitigated by forming Pd-based alloys with secondary metals, which improves both stability and performance. Herein, carbon nanotube (CNT)-supported PdAg, PdNi, PdPt and PdZn catalysts were prepared via a NaBH4 sequential reduction method to investigate their formic acid electrooxidation (FAEO) behavior. Inductively coupled plasma mass spectrometry (ICP–MS) was used to determine the elemental composition of the catalyst, and transmission electron microscopy (TEM) analysis was used to determine the morphological structure. Electrochemical techniques including cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were employed to assess and compare their FAEO performance. A current density of 16.65 mA/cm2 was achieved with PdNi/CNT at a potential of approximately 0.2 V. This is the result of a 1000 s CA analysis. Among the bimetallic catalysts, PdNi/CNT exhibited the highest activity and durability, combining a relatively large electrochemically active surface area with the lowest charge-transfer resistance and the most stable chronoamperometric response, thereby standing out as the most promising DFAFC anode catalyst.

References

  • Abdollahipour, A., & Sayyaadi, H. (2022). Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems. Energy, 260, 124944. https://doi.org/10.1016/j.energy.2022.124944.
  • Al-Akraa, I. M., Asal, Y. M., & Mohammad, A. M. (2022). Surface engineering of Pt surfaces with Au and cobalt oxide nanostructures for enhanced formic acid electro-oxidation. Arabian Journal of Chemistry, 15(8), 103965. https://doi.org/10.1016/j.arabjc.2022.103965.
  • Chang, J., Feng, L., Liu, C., Xing, W., & Hu, X. (2014). An effective Pd–Ni2P/C anode catalyst for direct formic acid fuel cells. Angewandte Chemie International Edition, 53(1), 122-126. https://doi.org/10.1002/anie.201308620.
  • Chen, X., Granda-Marulanda, L. P., McCrum, I. T., & Koper, M. T. M. (2022). How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nature Communications, 13(1), 38. https://doi.org/10.1038/s41467-021-27793-5.
  • Çögenli, M. S., & Ayşe, B. Y. (2018). Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation. Materials Research Express, 5(7), 075513. https://doi.org/10.1088/2053-1591/aad0e8.
  • Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954-1971. https://doi.org/10.1016/j.ijhydene.2011.03.173.
  • Dutta, I., Chatterjee, S., Cheng, H., Parsapur, R. K., Liu, Z., Li, Z.,…Huang, K.-W. (2022). Formic Acid to Power towards Low-Carbon Economy. Advanced Energy Materials, 12(15), 2103799. https://doi.org/10.1002/aenm.202103799.
  • Fan, J., Du, H., Zhao, Y., Wang, Q., Liu, Y., Li, D., & Feng, J. (2020). Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catalysis, 10(22), 13560-13583. https://doi.org/10.1021/acscatal.0c03280.
  • Fang, Z., & Chen, W. (2021). Recent advances in formic acid electro-oxidation: From the fundamental mechanism to electrocatalysts. Nanoscale Advances, 3(1), 94-105. https://doi.org/10.1039/D0NA00803F.
  • Gong, M., Li, F., Yao, Z., Zhang, S., Dong, J., Chen, Y., & Tang, Y. (2015). Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation [10.1039/C4NR07375D]. Nanoscale, 7(11), 4894-4899. https://doi.org/10.1039/C4NR07375D.
  • Gunji, T., & Matsumoto, F. (2019). Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials. Inorganics, 7(3). https://doi.org/10.3390/inorganics7030036.
  • Guo, Z., Zhang, X., Sun, H., Dai, X., Yang, Y., Li, X., & Meng, T. (2014). Novel honeycomb nanosphere Au@Pt bimetallic nanostructure as a high performance electrocatalyst for methanol and formic acid oxidation. Electrochimica Acta, 134, 411-417. https://doi.org/10.1016/j.electacta.2014.04.088.
  • Hong, M., & Jo, A. (2025). Improved electrochemical surface area measurement of platinum using a potential holding strategy. Electrochimica Acta, 540, 147249. https://doi.org/10.1016/j.electacta.2025.147249.
  • Jung, W. S., Han, J., & Ha, S. (2007). Analysis of palladium-based anode electrode using electrochemical impedance spectra in direct formic acid fuel cells. Journal of Power Sources, 173(1), 53-59. https://doi.org/10.1016/j.jpowsour.2007.08.023.
  • Kamarudin, M. Z. F., Kamarudin, S. K., Masdar, M. S., & Daud, W. R. W. (2013). Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy, 38(22), 9438-9453. https://doi.org/10.1016/j.ijhydene.2012.07.059.
  • Kamarudin, S. K., Achmad, F., & Daud, W. R. W. (2009). Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy, 34(16), 6902-6916. https://doi.org/10.1016/j.ijhydene.2009.06.013.
  • Kamran, M., & Turzyński, M. (2024). Exploring hydrogen energy systems: A comprehensive review of technologies, applications, prevailing trends, and associated challenges. Journal of Energy Storage, 96, 112601. https://doi.org/10.1016/j.est.2024.112601.
  • Kumar, A., & Buttry, D. A. (2016). Influence of Halide Ions on Anodic Oxidation of Ethanol on Palladium. Electrocatalysis, 7(3), 201-206. https://doi.org/10.1007/s12678-015-0298-2.
  • Lal, A., Porat, H., Dutta, A., Catherin Sesu, D., Yadav, M. K., & Borenstein, A. (2024). Palladium-Embedded Laser-Induced Graphene for Efficient Formic Acid Oxidation. Energy & Fuels, 38(19), 18930-18939. https://doi.org/10.1021/acs.energyfuels.4c03417.
  • Li, D., Meng, F., Wang, H., Jiang, X., & Zhu, Y. (2016). Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochimica Acta, 190, 852-861. https://doi.org/10.1016/j.electacta.2016.01.001.
  • Liao, M., Hu, Q., Zheng, J., Li, Y., Zhou, H., Zhong, C.-J., & Chen, B. H. (2013). Pd decorated Fe/C nanocatalyst for formic acid electrooxidation. Electrochimica Acta, 111, 504-509. https://doi.org/10.1016/j.electacta.2013.08.102.
  • Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., & Wilkinson, D. P. (2006). A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 155(2), 95-110. https://doi.org/10.1016/j.jpowsour.2006.01.030.
  • Lović, J. D., Tripković, A. V., Gojković, S. L., Popović, K. D., Tripković, D. V., Olszewski, P., & Kowal, A. (2005). Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. Journal of Electroanalytical Chemistry, 581(2), 294-302. https://doi.org/10.1016/j.jelechem.2005.05.002.
  • Lu, Y., & Chen, W. (2010). Nanoneedle-Covered Pd−Ag Nanotubes: High Electrocatalytic Activity for Formic Acid Oxidation. The Journal of Physical Chemistry C, 114(49), 21190-21200. https://doi.org/10.1021/jp107768n.
  • Lu, Y., & Chen, W. (2012). PdAg Alloy Nanowires: Facile One-Step Synthesis and High Electrocatalytic Activity for Formic Acid Oxidation. ACS Catalysis, 2(1), 84-90. https://doi.org/10.1021/cs200538g.
  • Matin, M. A., Jang, J.-H., & Kwon, Y.-U. (2014). PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. Journal of Power Sources, 262, 356-363. https://doi.org/10.1016/j.jpowsour.2014.03.109.
  • Mirza, S., Chen, H., Gu, Z.-G., & Zhang, J. (2018). Electrooxidation of Pd–Cu NP loaded porous carbon derived from a Cu-MOF [10.1039/C7RA10331J]. RSC Advances, 8(4), 1803-1807. https://doi.org/10.1039/C7RA10331J.
  • Sofian, M., Nasim, F., Ali, H., & Nadeem, M. A. (2023). Pronounced effect of yttrium oxide on the activity of Pd/rGO electrocatalyst for formic acid oxidation reaction [10.1039/D3RA01929B]. RSC Advances, 13(21), 14306-14316. https://doi.org/10.1039/D3RA01929B.
  • Tellez-Cruz, M. M., Escorihuela, J., Solorza-Feria, O., & Compañ, V. (2021). Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers, 13(18). https://doi.org/10.3390/polym13183064.
  • Ulas, B., Caglar, A., Kivrak, A., Aktas, N., & Kivrak, H. (2020). Tailoring the metallic composition of Pd, Pt, and Au containing novel trimetallic catalysts to achieve enhanced formic acid electrooxidation activity. Ionics, 26(6), 3109-3121. https://doi.org/10.1007/s11581-020-03444-5.
  • Ulas, B., Caglar, A., Sahin, O., & Kivrak, H. (2018). Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. Journal of Colloid and Interface Science, 532, 47-57. https://doi.org/10.1016/j.jcis.2018.07.120.
  • Ulas, B., Yilmaz, Y., Gök, Ö., & Kivrak, H. (2024). Highly active polyethylene glycol grafted cellulose supported Pd nanoparticles for glucose electrooxidation. Process Safety and Environmental Protection, 185, 772-781. https://doi.org/10.1016/j.psep.2024.03.063.
  • Usman, M., Zeb, Z., Ullah, H., Suliman, M. H., Humayun, M., Ullah, L.,…Saeed, M. (2022). A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. Journal of Environmental Chemical Engineering, 10(3), 107548. https://doi.org/10.1016/j.jece.2022.107548.
  • Wang, Y., He, Q., Wei, H., Guo, J., Ding, K.-q., Wang, Q.,…Guo, Z. (2015). Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation. Electrochimica acta, 184, 452-465. https://doi.org/10.1016/j.electacta.2015.10.046.
  • Yao, S., Li, G., Liu, C., & Xing, W. (2015). Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation. Journal of Power Sources, 284, 355-360. https://doi.org/10.1016/j.jpowsour.2015.02.056.
  • Yu, X., & Pickup, P. G. (2008). Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources, 182(1), 124-132. https://doi.org/10.1016/j.jpowsour.2008.03.075.
  • Zhao, Q., Ge, C., Cai, Y., Qiao, Q., & Jia, X. (2018). Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid. Journal of Colloid and Interface Science, 514, 425-432. https://doi.org/10.1016/j.jcis.2017.12.053.
  • Zhu, Y., Ha, S. Y., & Masel, R. I. (2004). High power density direct formic acid fuel cells. Journal of Power Sources, 130(1), 8-14. https://doi.org/10.1016/j.jpowsour.2003.11.051.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Özlem Gökdoğan Şahin 0000-0001-6188-5517

Yavuz Yağızatlı 0000-0003-4926-3621

Berdan Ulaş 0000-0003-0650-0316

Submission Date November 13, 2025
Acceptance Date December 24, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Gökdoğan Şahin, Ö., Yağızatlı, Y., & Ulaş, B. (2025). Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells. International Journal of Chemistry and Technology, 9(2), 378-385. https://doi.org/10.32571/ijct.1823426
AMA Gökdoğan Şahin Ö, Yağızatlı Y, Ulaş B. Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells. Int. J. Chem. Technol. December 2025;9(2):378-385. doi:10.32571/ijct.1823426
Chicago Gökdoğan Şahin, Özlem, Yavuz Yağızatlı, and Berdan Ulaş. “Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells”. International Journal of Chemistry and Technology 9, no. 2 (December 2025): 378-85. https://doi.org/10.32571/ijct.1823426.
EndNote Gökdoğan Şahin Ö, Yağızatlı Y, Ulaş B (December 1, 2025) Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells. International Journal of Chemistry and Technology 9 2 378–385.
IEEE Ö. Gökdoğan Şahin, Y. Yağızatlı, and B. Ulaş, “Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells”, Int. J. Chem. Technol., vol. 9, no. 2, pp. 378–385, 2025, doi: 10.32571/ijct.1823426.
ISNAD Gökdoğan Şahin, Özlem et al. “Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells”. International Journal of Chemistry and Technology 9/2 (December2025), 378-385. https://doi.org/10.32571/ijct.1823426.
JAMA Gökdoğan Şahin Ö, Yağızatlı Y, Ulaş B. Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells. Int. J. Chem. Technol. 2025;9:378–385.
MLA Gökdoğan Şahin, Özlem et al. “Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells”. International Journal of Chemistry and Technology, vol. 9, no. 2, 2025, pp. 378-85, doi:10.32571/ijct.1823426.
Vancouver Gökdoğan Şahin Ö, Yağızatlı Y, Ulaş B. Enhanced Formic Acid Electrooxidation on Carbon Nanotube-Supported PdM (M = Ag, Ni, Pt, Zn) Bimetallic Catalysts for Direct Formic Acid Fuel Cells. Int. J. Chem. Technol. 2025;9(2):378-85.