Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 400 - 413, 29.12.2025
https://doi.org/10.32571/ijct.1825636

Abstract

Project Number

TOVAG-109O099

References

  • Akçay, U. Ç., Özkan, G., Şan, B., Dolgun, O., Dağdelen, A., & Konuşkan, D. B. (2014). Genetic stability in a predominating Turkish olive cultivar, Gemlik, assessed by RAPD, microsatellite, and AFLP marker systems. Turkish Journal of Botany, 38(3), 430–438. https://doi.org/10.3906/bot-1309-23.
  • AOAC. (2016). Official methods of analysis of AOAC International (20th ed.). American Oil Chemists’ Society.
  • AOCS. (2017). Official methods and recommended practices of the AOCS (7th ed.). American Oil Chemists’ Society.
  • Aparicio-Ruiz, R., Mínguez-Mosquera, M. I., & Gandul-Rojas, B. (2010). Thermal degradation kinetics of chlorophyll pigments in virgin olive oils. 1. Compounds of series a. Journal of Agricultural and Food Chemistry, 58(10), 6200-6208. https://doi.org/10.1021/jf9043937
  • Ben Yahia, Y., Barakate, M., Bouaziz, M., & Ksouri, R. (2019). Variability of carotenoid contents in different cultivars of Olea europaea L. during fruit ripening. Scientia Horticulturae, 248, 297–303. https://doi.org/10.1016/j.scienta.2019.01.048
  • Boussadia, O., Steppe, K., Zgallai, H., El Hadj, S. B., Braham, M., Lemeur, R., & Van Labeke, M. C. (2010). Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Scientia Horticulturae, 123(3),336-342. https://doi.org/10.1016/j.scienta.2009.09.023
  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  • Dag, A., Kerem, Z., Yogev, N., Zipori, I., Lavee, S., & Ben-David, E. (2011). Influence of time of harvest and maturity index on olive oil yield and quality. Scientia Horticulturae, 127(3), 358-366. https://doi.org/10.1016/j.scienta.2010.11.008
  • Esri. (2025). Olive cultivation climate suitability maps of the Mediterranean basin. Esri Climate Lab.
  • FAO. (2024). FAOSTAT: Crops – Olives. Food and Agriculture Organization of the United Nations.
  • Field, A. (2000). Discovering statistics using SPSS for Windows. Sage.
  • Flamminii, F., Marone, E., Neri, L., Pollastri, L., Cichelli, A., & Di Mattia, C. D. (2021). The effect of harvesting time on olive fruits and oils quality parameters of Tortiglione and Dritta olive cultivars. European Journal of Lipid Science and Technology, 123(11), 2000382. https://doi.org/10.1002/ejlt.202000382
  • Gamlı, Ö. F., & Eker, T. (2017). Determination of harvest time of Gemlik olive cultivars by using physical and chemical properties. Journal of Food Measurement and Characterization, 11(4),2022–2030. https://doi.org/10.1007/s11694-017-9585-3
  • Sedjati, S., Santosa, G. W., Yudiati, E., Supriyantini, E., Ridlo, A., & Kimberly, F. D. (2019, March). Chlorophyll and carotenoid content of dunaliella salina at various salinity stress and harvesting time. In IOP Conference Series: Earth and Environmental Science (Vol. 246, No. 1, p. 012025). IOP Publishing. doi:10.1088/1755-1315/246/1/012025
  • Gómez-del-Campo, M., León, L., & de la Rosa, R. (2008). Variability of fruit characters in olive (Olea europaea L.) progenies. Spanish Journal of Agricultural Research, 6(3), 408–417. https://doi.org/10.5424/sjar/2008063-340
  • International Olive Council. (2022). World olive oil and table olive figures – 2021/22 season.
  • Irmak, Ş., Sefer, F., Güngör, F. Ö., Susamcı, E., Güloğlu, U., Yıldırım, A., & Tusu, G. (2022). Determination of table olive characteristics of new olive varieties obtained by crossbreeding of Gemlik and Memecik variety. Journal of Agriculture Faculty of Ege University, 59(2), 195-208. https://doi.org/10.20289/zfdergi.890479
  • Kaçar, B. (1995). Bitki ve toprağın kimyasal analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı.Ozturk, H. İ.
  • Keceli, T. M., Kamiloglu, S., & Capanoglu, E. (2017). Phenolic compounds of olives and olive oil and their bioavailability. In A. Kharrazi, M., Nasrollahzadeh, S., & Karimi, R. (2022). The role of nitrogen in chlorophyll synthesis in olives. Plant Nutrition and Soil Science, 185(2), 315–322.
  • Keceli, T. M., & Celik, F. H. (2024). Discrimination of Turkish Gemlik virgin olive oils by growing regions and environmental conditions. Journal of the American Oil Chemists' Society, 101(5), 45. https://doi.org/10.1002/aocs.12791
  • Kiritsakis & F. Shahidi (Eds.), Olives and Olive Oil as Functional Foods (pp. 457–470). John Wiley & Sons. DOI:10.1002/9781119135340
  • Lazzez, A., Vichi, S., & Kammoun, M. (2008). Environmental effects on phenolic and pigment contents of olives. Food Chemistry, 111(3), 683–689.Mastralexi, A. (2019). Evolution of safety and other quality parameters of table olives. European Journal of Lipid Science and Technology, 121(1), e1800171. https://doi.org/10.1002/ejlt.201800171.
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1.
  • Marcelo, M. E., Jordão, P. V., Matias, H., & Rogado, B. (2010). Influence of nitrogen and magnesium fertilization of olive tree Picual on yield and olive oil quality. Acta Hortic, 868, 445-450. DOI:10.17660/ActaHortic.2010.868.62
  • Marschner, H. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press.
  • McCune, B., & Mefford, M. J. (1999). PC-ORD: Multivariate analysis of ecological data, version 4. Gleneden Beach, Oregon: MjM Software Design.
  • Rey‐Giménez, R., & Sánchez‐Gimeno, A. C. (2024). Effect of cultivar and environment on chemical composition and geographical traceability of Spanish olive oils. Journal of the American Oil Chemists' Society, 101(4), 371-382. https://doi.org/10.1002/aocs.12774
  • Rial, R., & Falque, E. (2003). Influence of the geographical area and cultivar on the composition of olives used for oil production in Galicia (Northwest Spain). Grasas y Aceites, 54(2), 115–123. https://doi.org/10.3989/gya.2003.v54.i2.231 grasasyaceites.revistas.csic.es.
  • Roca, M., & Mínguez-Mosquera, M. I. (2001). Changes in chloroplast pigments of olive varieties during fruit ripening. Journal of Agricultural and Food Chemistry, 49(2), 832–839. https://doi.org/10.1021/jf001000l
  • Saddoud Debbabi, O., Rahmani Mnasri, S., Ben Amar, F., Ben Naceur, M. B., Montemurro, C., & Miazzi, M. M. (2021). Applications of microsatellite markers for the characterization of olive genetic resources of Tunisia. Genes, 12(2),286. https://doi.org/10.3390/genes12020286
  • Sanz-Cortés, F., Badenes, M. L., & Martínez-Calvo, J. (2001). Genetic relationships of Spanish olive cultivars using RAPD markers. HortScience, 36(2), 303–307.
  • Thompson, M., & Nicholas, D. J. D. (1989). Inductively coupled plasma atomic emission spectrometry for the determination of trace elements in biological samples. Journal of Analytical Atomic Spectrometry, 4(5), 393-397. https://doi.org/10.1039/JA9890400393
  • Tunç, Y., Yaman, M., & Yılmaz, K. U. (2024). Determination of phenotypic diversity and effective temperature sum times in some olive (Olea europaea L.) varieties by using phenological stages with multivariate analysis. Applied Fruit Science, 66, 1151–1161. https://doi.org/10.1007/s10341-024-01091-y
  • Uceda, M. ve Frias, L. (1975) Harvest dates, Evolution of the fruit oil content, oil composition and oil quality. (s. 125-130). Cordoba: Proc Segundo Seminario Oleicola Internacional.
  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • Yılmaz-Düzyaman, H., Medina-Alonso, M. G., Sanz, C., Pérez, A. G., de la Rosa, R., & León, L. (2023). Influence of genotype and environment on fruit phenolic composition of Olive. Horticulturae, 9(10),1087. https://doi.org/10.3390/horticulturae9101087
  • Yorulmaz, H.O., & Konuskan, D.B. (2017). Antioxidant activity, sterol and fatty acid compositions of Turkish olive oils as an indicator of variety and ripening degree. J Food Sci Technol 54, 4067–4077. https://doi.org/10.1007/s13197-017-2879-y
  • Yousfi, K., Cert, R. M., & García, J. M. (2006). Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. European Food Research and Technology, 223(1),117-124. https://doi.org/10.1002/jsfa.3784
  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145-156. https://doi.org/10.1590/S1677-04202005000100012

Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals

Year 2025, Volume: 9 Issue: 2, 400 - 413, 29.12.2025
https://doi.org/10.32571/ijct.1825636

Abstract

This study examined how some physicochemical properties of Gemlik olives (Olea europaea L. cv. Gemlik) grown in five different regions of Türkiye (Antalya, Aydın, Balıkesir, Manisa, and Hatay) differed during two harvest seasons. The study was conducted to find out how changes in climate, soil composition, and leaf nutrients in the different regions affect fruit ripening, oil accumulation, and fruit pigmentation. Water, dry matter, oil, chlorophyll, and carotenoid contents analyses were performed on Gemlik olives. Balıkesir olives yielded the most oil (64.04% and 57.10% of dry weight), but Aydın and Manisa olives yielded less oil (16-17% of dry weight). Hatay had the most pigments (40.64 mg/kg chlorophyll and 235.63 mg/kg carotenoids). Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that oil and pigment changes are linked to environmental factors such as temperature, salt, and soil magnesium. This study ties in with the UN Sustainable Development Goals (SDGs 2, 12, and 13). It will also ensure quality and resilience to climate change within Protected Designation of Origin (PDO) systems.

Ethical Statement

no

Supporting Institution

TÜBİTAK

Project Number

TOVAG-109O099

Thanks

This research was funded by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) under Project TOVAG-109O099, called “Comparison of Fruit, Oil, and Molecular Characteristics of Gemlik Olives Grown in the Marmara, Aegean, Western, and Eastern Mediterranean Regions.”

References

  • Akçay, U. Ç., Özkan, G., Şan, B., Dolgun, O., Dağdelen, A., & Konuşkan, D. B. (2014). Genetic stability in a predominating Turkish olive cultivar, Gemlik, assessed by RAPD, microsatellite, and AFLP marker systems. Turkish Journal of Botany, 38(3), 430–438. https://doi.org/10.3906/bot-1309-23.
  • AOAC. (2016). Official methods of analysis of AOAC International (20th ed.). American Oil Chemists’ Society.
  • AOCS. (2017). Official methods and recommended practices of the AOCS (7th ed.). American Oil Chemists’ Society.
  • Aparicio-Ruiz, R., Mínguez-Mosquera, M. I., & Gandul-Rojas, B. (2010). Thermal degradation kinetics of chlorophyll pigments in virgin olive oils. 1. Compounds of series a. Journal of Agricultural and Food Chemistry, 58(10), 6200-6208. https://doi.org/10.1021/jf9043937
  • Ben Yahia, Y., Barakate, M., Bouaziz, M., & Ksouri, R. (2019). Variability of carotenoid contents in different cultivars of Olea europaea L. during fruit ripening. Scientia Horticulturae, 248, 297–303. https://doi.org/10.1016/j.scienta.2019.01.048
  • Boussadia, O., Steppe, K., Zgallai, H., El Hadj, S. B., Braham, M., Lemeur, R., & Van Labeke, M. C. (2010). Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Scientia Horticulturae, 123(3),336-342. https://doi.org/10.1016/j.scienta.2009.09.023
  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  • Dag, A., Kerem, Z., Yogev, N., Zipori, I., Lavee, S., & Ben-David, E. (2011). Influence of time of harvest and maturity index on olive oil yield and quality. Scientia Horticulturae, 127(3), 358-366. https://doi.org/10.1016/j.scienta.2010.11.008
  • Esri. (2025). Olive cultivation climate suitability maps of the Mediterranean basin. Esri Climate Lab.
  • FAO. (2024). FAOSTAT: Crops – Olives. Food and Agriculture Organization of the United Nations.
  • Field, A. (2000). Discovering statistics using SPSS for Windows. Sage.
  • Flamminii, F., Marone, E., Neri, L., Pollastri, L., Cichelli, A., & Di Mattia, C. D. (2021). The effect of harvesting time on olive fruits and oils quality parameters of Tortiglione and Dritta olive cultivars. European Journal of Lipid Science and Technology, 123(11), 2000382. https://doi.org/10.1002/ejlt.202000382
  • Gamlı, Ö. F., & Eker, T. (2017). Determination of harvest time of Gemlik olive cultivars by using physical and chemical properties. Journal of Food Measurement and Characterization, 11(4),2022–2030. https://doi.org/10.1007/s11694-017-9585-3
  • Sedjati, S., Santosa, G. W., Yudiati, E., Supriyantini, E., Ridlo, A., & Kimberly, F. D. (2019, March). Chlorophyll and carotenoid content of dunaliella salina at various salinity stress and harvesting time. In IOP Conference Series: Earth and Environmental Science (Vol. 246, No. 1, p. 012025). IOP Publishing. doi:10.1088/1755-1315/246/1/012025
  • Gómez-del-Campo, M., León, L., & de la Rosa, R. (2008). Variability of fruit characters in olive (Olea europaea L.) progenies. Spanish Journal of Agricultural Research, 6(3), 408–417. https://doi.org/10.5424/sjar/2008063-340
  • International Olive Council. (2022). World olive oil and table olive figures – 2021/22 season.
  • Irmak, Ş., Sefer, F., Güngör, F. Ö., Susamcı, E., Güloğlu, U., Yıldırım, A., & Tusu, G. (2022). Determination of table olive characteristics of new olive varieties obtained by crossbreeding of Gemlik and Memecik variety. Journal of Agriculture Faculty of Ege University, 59(2), 195-208. https://doi.org/10.20289/zfdergi.890479
  • Kaçar, B. (1995). Bitki ve toprağın kimyasal analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı.Ozturk, H. İ.
  • Keceli, T. M., Kamiloglu, S., & Capanoglu, E. (2017). Phenolic compounds of olives and olive oil and their bioavailability. In A. Kharrazi, M., Nasrollahzadeh, S., & Karimi, R. (2022). The role of nitrogen in chlorophyll synthesis in olives. Plant Nutrition and Soil Science, 185(2), 315–322.
  • Keceli, T. M., & Celik, F. H. (2024). Discrimination of Turkish Gemlik virgin olive oils by growing regions and environmental conditions. Journal of the American Oil Chemists' Society, 101(5), 45. https://doi.org/10.1002/aocs.12791
  • Kiritsakis & F. Shahidi (Eds.), Olives and Olive Oil as Functional Foods (pp. 457–470). John Wiley & Sons. DOI:10.1002/9781119135340
  • Lazzez, A., Vichi, S., & Kammoun, M. (2008). Environmental effects on phenolic and pigment contents of olives. Food Chemistry, 111(3), 683–689.Mastralexi, A. (2019). Evolution of safety and other quality parameters of table olives. European Journal of Lipid Science and Technology, 121(1), e1800171. https://doi.org/10.1002/ejlt.201800171.
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1.
  • Marcelo, M. E., Jordão, P. V., Matias, H., & Rogado, B. (2010). Influence of nitrogen and magnesium fertilization of olive tree Picual on yield and olive oil quality. Acta Hortic, 868, 445-450. DOI:10.17660/ActaHortic.2010.868.62
  • Marschner, H. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press.
  • McCune, B., & Mefford, M. J. (1999). PC-ORD: Multivariate analysis of ecological data, version 4. Gleneden Beach, Oregon: MjM Software Design.
  • Rey‐Giménez, R., & Sánchez‐Gimeno, A. C. (2024). Effect of cultivar and environment on chemical composition and geographical traceability of Spanish olive oils. Journal of the American Oil Chemists' Society, 101(4), 371-382. https://doi.org/10.1002/aocs.12774
  • Rial, R., & Falque, E. (2003). Influence of the geographical area and cultivar on the composition of olives used for oil production in Galicia (Northwest Spain). Grasas y Aceites, 54(2), 115–123. https://doi.org/10.3989/gya.2003.v54.i2.231 grasasyaceites.revistas.csic.es.
  • Roca, M., & Mínguez-Mosquera, M. I. (2001). Changes in chloroplast pigments of olive varieties during fruit ripening. Journal of Agricultural and Food Chemistry, 49(2), 832–839. https://doi.org/10.1021/jf001000l
  • Saddoud Debbabi, O., Rahmani Mnasri, S., Ben Amar, F., Ben Naceur, M. B., Montemurro, C., & Miazzi, M. M. (2021). Applications of microsatellite markers for the characterization of olive genetic resources of Tunisia. Genes, 12(2),286. https://doi.org/10.3390/genes12020286
  • Sanz-Cortés, F., Badenes, M. L., & Martínez-Calvo, J. (2001). Genetic relationships of Spanish olive cultivars using RAPD markers. HortScience, 36(2), 303–307.
  • Thompson, M., & Nicholas, D. J. D. (1989). Inductively coupled plasma atomic emission spectrometry for the determination of trace elements in biological samples. Journal of Analytical Atomic Spectrometry, 4(5), 393-397. https://doi.org/10.1039/JA9890400393
  • Tunç, Y., Yaman, M., & Yılmaz, K. U. (2024). Determination of phenotypic diversity and effective temperature sum times in some olive (Olea europaea L.) varieties by using phenological stages with multivariate analysis. Applied Fruit Science, 66, 1151–1161. https://doi.org/10.1007/s10341-024-01091-y
  • Uceda, M. ve Frias, L. (1975) Harvest dates, Evolution of the fruit oil content, oil composition and oil quality. (s. 125-130). Cordoba: Proc Segundo Seminario Oleicola Internacional.
  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • Yılmaz-Düzyaman, H., Medina-Alonso, M. G., Sanz, C., Pérez, A. G., de la Rosa, R., & León, L. (2023). Influence of genotype and environment on fruit phenolic composition of Olive. Horticulturae, 9(10),1087. https://doi.org/10.3390/horticulturae9101087
  • Yorulmaz, H.O., & Konuskan, D.B. (2017). Antioxidant activity, sterol and fatty acid compositions of Turkish olive oils as an indicator of variety and ripening degree. J Food Sci Technol 54, 4067–4077. https://doi.org/10.1007/s13197-017-2879-y
  • Yousfi, K., Cert, R. M., & García, J. M. (2006). Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. European Food Research and Technology, 223(1),117-124. https://doi.org/10.1002/jsfa.3784
  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145-156. https://doi.org/10.1590/S1677-04202005000100012
There are 39 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Gülcan Özkan 0000-0002-3333-7537

Dilşat Bozdoğan Konuşkan 0000-0002-3788-3543

Serkan Gülsoy 0000-0003-2011-8324

Ufuk Çelikkol Akçay 0000-0003-1260-3813

Bekir Şan 0000-0001-6483-8433

Oğuz Dolgun 0000-0003-0692-0919

Project Number TOVAG-109O099
Submission Date November 17, 2025
Acceptance Date December 27, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Özkan, G., Bozdoğan Konuşkan, D., Gülsoy, S., … Çelikkol Akçay, U. (2025). Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals. International Journal of Chemistry and Technology, 9(2), 400-413. https://doi.org/10.32571/ijct.1825636
AMA Özkan G, Bozdoğan Konuşkan D, Gülsoy S, Çelikkol Akçay U, Şan B, Dolgun O. Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals. Int. J. Chem. Technol. December 2025;9(2):400-413. doi:10.32571/ijct.1825636
Chicago Özkan, Gülcan, Dilşat Bozdoğan Konuşkan, Serkan Gülsoy, Ufuk Çelikkol Akçay, Bekir Şan, and Oğuz Dolgun. “Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals”. International Journal of Chemistry and Technology 9, no. 2 (December 2025): 400-413. https://doi.org/10.32571/ijct.1825636.
EndNote Özkan G, Bozdoğan Konuşkan D, Gülsoy S, Çelikkol Akçay U, Şan B, Dolgun O (December 1, 2025) Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals. International Journal of Chemistry and Technology 9 2 400–413.
IEEE G. Özkan, D. Bozdoğan Konuşkan, S. Gülsoy, U. Çelikkol Akçay, B. Şan, and O. Dolgun, “Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals”, Int. J. Chem. Technol., vol. 9, no. 2, pp. 400–413, 2025, doi: 10.32571/ijct.1825636.
ISNAD Özkan, Gülcan et al. “Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals”. International Journal of Chemistry and Technology 9/2 (December2025), 400-413. https://doi.org/10.32571/ijct.1825636.
JAMA Özkan G, Bozdoğan Konuşkan D, Gülsoy S, Çelikkol Akçay U, Şan B, Dolgun O. Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals. Int. J. Chem. Technol. 2025;9:400–413.
MLA Özkan, Gülcan et al. “Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals”. International Journal of Chemistry and Technology, vol. 9, no. 2, 2025, pp. 400-13, doi:10.32571/ijct.1825636.
Vancouver Özkan G, Bozdoğan Konuşkan D, Gülsoy S, Çelikkol Akçay U, Şan B, Dolgun O. Quality Assessment in Gemlik PDO Olives Based on Regional Differences, Oil, and Pigment Contents Within the SDG Goals. Int. J. Chem. Technol. 2025;9(2):400-13.