13. Arjmand, F.; Shafiei, F. J. Struc. Chem. 2018, 59, 3, 748-754.
14. Katritzky,A. R.; Maran, U.; Lobanov,V. S.; Karelson, M. J. Chem. Inf. Comput. Sci. 2000, 40, 1-18.
15. Katritzky, A. R.; Lobanov,V. S.; Karelson, M. Chem. Soc. Rev. 1995, 24, 279-287.
16. Mackay, D.; Shiu,W.Y.; Ma, K.C.; Lee, S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742.Vol III, 2006.
18. HyperChem 6.03 Package. Hypercube, Inc., Gainesville, Florida, USA, 1999, software available at: http://www.hyper.com.
19. Gaber, M.M. Scientific Data Mining and Knowledge Discovery: Principles and Foundations; Springer Heidelberg Dordrecht London, Berlin, 2009.
20. Talete Srl. Dragon for Windows (Software for Molecular Descriptor Calculation) Version 5.5 Milano, Italy, 2007, software available at: http://www.talete.mi.it.
21. Leardi, R.; Boggia, R,; Terrile, M. J. Chemom. 1992, 6, 267-281.
22. Todeschni, R.; Ballabio, D.; Consonni, V.; Mauri, A.; Pavan, M. 2009. Mobydigs – version 1.1 – Copyright TALETE Srl.
This work aims to reveal the correlation of the boiling point values of
phenolic compounds with their molecular structures using a quantitative
structure-property relationship (QSPR) approach. A large number of molecular
descriptors have been calculated from molecular structures by the DRAGON software.
In this study, all 56 phenolic compounds were divided into two subsets: one for
the model formation and the other for external validation, by using the Kennard
and Stone algorithm. A four-descriptor model was constructed by applying a
multiple linear regression based on the ordinary least squares regression
method and genetic algorithm/variables subsets selection. The good of fit and
predictive power of the proposed model were evaluated by different approaches,
including single or multiple output cross-validations, the Y-scrambling test,
and external validation through prediction set.Also,
the applicability domain of the developed model was examined using Williams
plot. The model shows R² = 0.876, Q²LOO = 0.841, Q²LMO =
0.831 and Q²EXT = 0.848. The results obtained demonstrate that the
model is reliable with good predictive accuracy.
13. Arjmand, F.; Shafiei, F. J. Struc. Chem. 2018, 59, 3, 748-754.
14. Katritzky,A. R.; Maran, U.; Lobanov,V. S.; Karelson, M. J. Chem. Inf. Comput. Sci. 2000, 40, 1-18.
15. Katritzky, A. R.; Lobanov,V. S.; Karelson, M. Chem. Soc. Rev. 1995, 24, 279-287.
16. Mackay, D.; Shiu,W.Y.; Ma, K.C.; Lee, S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742.Vol III, 2006.
18. HyperChem 6.03 Package. Hypercube, Inc., Gainesville, Florida, USA, 1999, software available at: http://www.hyper.com.
19. Gaber, M.M. Scientific Data Mining and Knowledge Discovery: Principles and Foundations; Springer Heidelberg Dordrecht London, Berlin, 2009.
20. Talete Srl. Dragon for Windows (Software for Molecular Descriptor Calculation) Version 5.5 Milano, Italy, 2007, software available at: http://www.talete.mi.it.
21. Leardi, R.; Boggia, R,; Terrile, M. J. Chemom. 1992, 6, 267-281.
22. Todeschni, R.; Ballabio, D.; Consonni, V.; Mauri, A.; Pavan, M. 2009. Mobydigs – version 1.1 – Copyright TALETE Srl.
Kherouf, S., Bouarra, N., & Messadi, D. (2019). Quantitative modeling for prediction of boiling points of phenolic compounds. International Journal of Chemistry and Technology, 3(2), 121-128. https://doi.org/10.32571/ijct.636581
AMA
Kherouf S, Bouarra N, Messadi D. Quantitative modeling for prediction of boiling points of phenolic compounds. Int. J. Chem. Technol. December 2019;3(2):121-128. doi:10.32571/ijct.636581
Chicago
Kherouf, Soumaya, Nabil Bouarra, and Djelloul Messadi. “Quantitative Modeling for Prediction of Boiling Points of Phenolic Compounds”. International Journal of Chemistry and Technology 3, no. 2 (December 2019): 121-28. https://doi.org/10.32571/ijct.636581.
EndNote
Kherouf S, Bouarra N, Messadi D (December 1, 2019) Quantitative modeling for prediction of boiling points of phenolic compounds. International Journal of Chemistry and Technology 3 2 121–128.
IEEE
S. Kherouf, N. Bouarra, and D. Messadi, “Quantitative modeling for prediction of boiling points of phenolic compounds”, Int. J. Chem. Technol., vol. 3, no. 2, pp. 121–128, 2019, doi: 10.32571/ijct.636581.
ISNAD
Kherouf, Soumaya et al. “Quantitative Modeling for Prediction of Boiling Points of Phenolic Compounds”. International Journal of Chemistry and Technology 3/2 (December 2019), 121-128. https://doi.org/10.32571/ijct.636581.
JAMA
Kherouf S, Bouarra N, Messadi D. Quantitative modeling for prediction of boiling points of phenolic compounds. Int. J. Chem. Technol. 2019;3:121–128.
MLA
Kherouf, Soumaya et al. “Quantitative Modeling for Prediction of Boiling Points of Phenolic Compounds”. International Journal of Chemistry and Technology, vol. 3, no. 2, 2019, pp. 121-8, doi:10.32571/ijct.636581.
Vancouver
Kherouf S, Bouarra N, Messadi D. Quantitative modeling for prediction of boiling points of phenolic compounds. Int. J. Chem. Technol. 2019;3(2):121-8.